How to find the integral of the secant function

frozen7
Messages
163
Reaction score
0
\int \sec hx
I solve it in this way:
\int \arccos hx
\int \ln (x^2 + \sqrt{x^2 -1}) dx

Then, I substitute u = \ln (x + \sqrt{x^2 + 1})
then I get
x\ln(x + \sqrt{x^2 + 1}) - \int x/\sqrt{x^2 + 1}dx

and then I substitute v = x^2 + 1

x\ln(x + \sqrt{x^2 + 1}) -1/2 \int v^(1/2) dv
and finally I get the answer,
x\ln(x + \sqrt{x^2 + 1}) -\sqrt{x^2 + 1} + C

Am I right?
 
Last edited:
Physics news on Phys.org
Do the Tanh(x/2) substitution.
 
tan (x/2) substitution? How?
 
Your second integral doesn't equal your first integral.
sech(x) is NOT equal to arcosh(x)!

sech(x) is the RECIPROCAL* of cosh(x), arcosh(x) is the (functional) INVERSE of cosh(x).




*Sometimes called the multiplicative inverse.
 
Do you know how to integrate sec(x)? Because a lot of times you can follow very similar procecures working with hyperbolic functions as with trigonometric ones. You just have to be careful about the signs of terms in certain identiies (eg, sin^2(x)+cos^2(x)=1 becomes cosh^2(x)-sinh^2(x)=1). Another approach would be to write sech out in terms of e^x and e^-x, and then use the substitution u=e^x.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top