How to find the orbits of a subgroup?

  • Thread starter Thread starter metalhadi
  • Start date Start date
  • Tags Tags
    Orbits Subgroup
metalhadi
Messages
2
Reaction score
0

Homework Statement


Hi everyone. I have just joined the community, and I really appreciate your help. Here is what I'm struggling with:

Assume a permutation group G generated by set S, i.e., G=<S>. Since S is given, we can easily find the orbit partition for G. Now assume the subgroup H of G that fixes one point in the permutation group. Can we easily find the orbit partition of H?

Let me give you an example:
Imagine group G with generators g1 = (1, 2)(3,4) and g2 = (2,5)(3,4). The orbit partition for G is {{1,2,5}, {3,4}}. Now imagine the subgroup H of G that fixes 3. What is the orbit partition for H?

P.S: I think you know what "fixing a point" means, but here is a hint. A point in a permutation set is fixed, if it is mapped to itself in all the permutations in the set. For example, 5 is mapped to 5 in g1, so 5 is fixed in g1.

2. The attempt at a solution
I want to mention two things, first the answer for the example I gave. Looking at generators g1 and g2, you realize that 3 is not fixed in any of them, but if you compose g1 and g2, you will get g1.g2=(2,5,1) which fixes 3. So you can say that the orbit of H is {{3}, {4}, {1,2,5}}.
Second, I thought that Schreier-Sims algorithm could solve this problem in general case, but then I found out that it is usually used to check membership. I have not yet found a direct link from Schreier-Sims algorithm to what I want, but there might be a way to use Schreier-Sims algorithm.

Thanks for your help! :-)
 
Physics news on Phys.org
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top