How to find the potential of a field that has regions of non-zero curl

AI Thread Summary
In electrostatics, the electric field E is conservative, allowing for the potential V to be derived from E as V = -∫E·dr. However, in regions where the curl of E is non-zero, such as those influenced by magnetic fields, constructing a global potential becomes impossible. The discussion emphasizes that one must integrate the field only in simply connected regions, excluding areas with non-zero curl to avoid inaccuracies. When dealing with non-simply-connected regions, the usual methods for finding potential do not apply, leading to results that do not satisfy the system. Ultimately, the inability to define a potential in these regions highlights the limitations of traditional approaches in electromagnetism.
kated
Messages
2
Reaction score
1
Homework Statement
I want to find the potential of a field at a point where the curl of the field is zero but there are regions(for example far away from the point that interest us) that have non zero curl.
Relevant Equations
E=-gradV
curl E = Ω ≠ 0
We know that in electrostatics, there is path independency for line integral of E, so E is a conservative field and thus we have E=-gradV. Integrating this from ro(reference point of our choice) to the point r we are studying, along a random path, we get the solution of the above equation, e.g. the potential V. But, there are some areas (possibly far away from
the point r that interests us) where the curl E is not zero, e.g., curl E = Ω ≠ 0 , with Ω
being a vector field perpendicular to the plane, which only exists in these areas, then
how would we solve again Α=gradΛ, to find the scalar function Λ at point r? (how will the previous (usual)
solution change/get corrected?) Consider the (unusual) case where Ω is a static
(time-independent) field.
 
Physics news on Phys.org
You cannot construct a global potential in this situation. The best you can do is to integrate the field in a region that is simply connected and excludes the region with non-zero curl.
 
What do you mean by excluding the region with non-zero curl? Doesn't it affect the result? If for example I have an infinite wire with width=d(y=0, y=d) with B a magnetic field that exist only inside the wire and is perpedicular to the plane, and we want to find the potential at a point r far away and above from the wire then if we choose a path starting below the wire where B=0 and ending at r(again B=0) but the path goes through the wire doesnt this affect the result? I mean if we do the same process we do when we are talking about conservative fields isnt the result 0 which does not satisfy the system? How can we correct this?
 
kated said:
What do you mean by excluding the region with non-zero curl? Doesn't it affect the result? If for example I have an infinite wire with width=d(y=0, y=d) with B a magnetic field that exist only inside the wire and is perpedicular to the plane, and we want to find the potential at a point r far away and above from the wire then if we choose a path starting below the wire where B=0 and ending at r(again B=0) but the path goes through the wire doesnt this affect the result?
Of course it does. The region where the curl is non-zero is then not simply connected, thereby violating the explicit requirement:
Orodruin said:
The best you can do is to integrate the field in a region that is simply connected and excludes the region with non-zero curl.


kated said:
I mean if we do the same process we do when we are talking about conservative fields isnt the result 0 which does not satisfy the system? How can we correct this?
You can't. In your non-simply-connected region, it is generally not possible to write the field as the derivative of a potential because the region is not simply connected.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top