askor
- 168
- 9
<Moderator's note: Moved from a technical forum and thus no template.>
How to find this limit?
\lim_{x \to 0} \frac{5x} {3 -\sqrt{9-x}}
I'd tried to find this limit as below but the result is 0:
\lim_{x \to 0} \frac{5x} {3 -\sqrt{9-x}}
\lim_{x \to 0} \frac{5x} {3 - \sqrt{9-x}} × \frac{3 + \sqrt{9 - x}}{3 + \sqrt{9 - x}}
\lim_{x \to 0} \frac{5x (3 + \sqrt{9 - x})} {(3 -\sqrt{9-x})(3 + \sqrt{9 - x})}
\lim_{x \to 0} \frac{15x + 5x\sqrt{9 - x}} {9 - (9 - x)}
\lim_{x \to 0} \frac{15x + \sqrt{5x}\sqrt{9 - x}} {9 - (9 - x)}
How to find this limit?
\lim_{x \to 0} \frac{5x} {3 -\sqrt{9-x}}
I'd tried to find this limit as below but the result is 0:
\lim_{x \to 0} \frac{5x} {3 -\sqrt{9-x}}
\lim_{x \to 0} \frac{5x} {3 - \sqrt{9-x}} × \frac{3 + \sqrt{9 - x}}{3 + \sqrt{9 - x}}
\lim_{x \to 0} \frac{5x (3 + \sqrt{9 - x})} {(3 -\sqrt{9-x})(3 + \sqrt{9 - x})}
\lim_{x \to 0} \frac{15x + 5x\sqrt{9 - x}} {9 - (9 - x)}
\lim_{x \to 0} \frac{15x + \sqrt{5x}\sqrt{9 - x}} {9 - (9 - x)}
Last edited by a moderator: