Perform the Euler substitution:
<br />
\left( x (1 - x) \right)^{\frac{1}{2}} = x \, t<br />
<br />
x (1 - x) = x^2 \, t^2<br />
<br />
1 - x = x \, t^2<br />
<br />
x = \frac{1}{1 + t^2} \Rightarrow \left(x (1 - x) \right)^{\frac{1}{2}} = x \, t = \frac{t}{1+t^2}, \ dx = -\frac{2 \, t \, dt}{(1 + t^2)^2}<br />
<br />
x = \frac{1}{2} \Rightarrow t = 1, \ x = 1 \Rightarrow t = 0<br />
So, your integral becomes:
<br />
I = \int_{1}^{0}{\frac{t}{1 + t^2} \, \frac{-2 t}{(1 + t^2)^2} \, dt} = 2 \, \int_{0}^{1}{\frac{t^2}{(1 + t^2)^3} \, dt}<br />
Try using integration by parts on this integral. What should your u and v be?