How to integrate int x/(x^2+1)dx

  • Thread starter Thread starter naspek
  • Start date Start date
  • Tags Tags
    Integrate
naspek
Messages
176
Reaction score
0
\int{\left(\frac{x}{x^2 + 1}\right)\,dx}

how to integrate?
i know \int{\left(\frac{1}{x^2 + 1}\right)\,dx}
is tan^-1 x + C

how am i going to start answering this question
 
Physics news on Phys.org


try substituting u=x2+1, du=?
 


rock.freak667 said:
try substituting u=x2+1, du=?

meaning.. i should u integration by substitution?
 


Yes, try the u substitution.
 


got it..
1/2 ln |x^2 + 1| + C

correct?
 


That's right. One thing though: since x2 + 1 is always greater than 0, no absolute values are needed.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top