Integrating ∫√(2+2sinθ) using (2+2sinΘ)(2-sinΘ)

  • Thread starter Thread starter aerograce
  • Start date Start date
  • Tags Tags
    Integrate
aerograce
Messages
63
Reaction score
1

Homework Statement



How to integrate∫√(2+2sinθ)

Homework Equations



Making use of (2+2sinΘ)(2-sinΘ)=4-4sinΘ^2

The Attempt at a Solution



Multiply and dividing the integrand by √2-2sinΘ
 
Physics news on Phys.org
aerograce said:

Homework Statement



How to integrate∫√(2+2sinθ)

Homework Equations



Making use of (2+2sinΘ)(2-sinΘ)=4-4sinΘ^2

The Attempt at a Solution



Multiply and dividing the integrand by √2-2sinΘ

Show us what happened when you did that...
 
LCKurtz said:
Show us what happened when you did that...

It becomes,

∫ 4cosΘ^2/√(2-2sinΘ)
 
aerograce said:
It becomes,

∫ 4cosΘ^2/√(2-2sinΘ)

Isn't there a square root missing in the numerator? Have you tried any substitutions?
 
  • Like
Likes 1 person
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top