How to model a rocket equation from the derivative of momentum?

AI Thread Summary
The discussion revolves around the application of Newton's 3rd Law and the derivative of momentum in analyzing the forces acting on a rocket, specifically in relation to gravitational force. The equation presented includes variables like gravitational force, mass of the rocket, and instantaneous changes in mass and acceleration. Participants clarify that gravity does not need to be included in the 3rd Law calculations, emphasizing the importance of relating the momentum change of ejected gases to the rocket's thrust. There is a suggestion to focus on the force required to overcome gravity when determining the rocket's thrust. The conversation highlights the complexities of modeling rocket dynamics accurately while considering mass loss during fuel consumption.
Physyx
Messages
2
Reaction score
0
TL;DR Summary
Using Newton’s 3rd Law, gravitational force, and derivative of momentum to model a rocket going into space while losing mass.
I am using the derivative of momentum (dp/dt) with Newton’s 3rd Law with the gravitational force of Earth.

F - [Force of gravity on rocket] = dp/dt
F - (G * m_e * m_r / r2 ) = v * dm/dt + ma

F = Force created by fuel (at time t)
G = Gravitational Constant
m_e = Mass of Earth
m_r = Mass of rocket (at time t)
r = Distance between Earth and rocket (at time t)
v = Velocity of rocket relative to Earth (at time t)
dm/dt = Instantaneous rate of change of mass of rocket (at time t)
m = Also mass of rocket (at time t)
a = Instantaneous acceleration of rocket (at time t, equal to dv/dt)

Is my equation correct for a standard rocket? Would dm/dt be negative as the rocket is losing mass over time? Is v relative to the Earth or the expelled gases and why?
 
Physics news on Phys.org
Hi Physyx. Welcome to PF!

You do not need to account for gravity in the 3rd law. You just need to relate the rate of change of momentum of the ejected rocket gases to the force on the rocket vehicle and make sure that the force exceeds the force of gravity.

AM
 
So how would I create a separate equation modeling the effect of gravity on the rocket in addition to the force created by the gas consumption?
 
Andrew Mason said:
You do not need to account for gravity. You just need to relate the rate of change of momentum of the ejected rocket gases to the force on the rocket vehicle.
By this reasoning the Apollo lunar module could happily land and take off from earth. I think you need to be more careful here.
This is detailed in many places...has the OP really looked around?
 
Physyx said:
So how would I create a separate equation modeling the effect of gravity on the rocket in addition to the force created by the gas consumption?
The rocket ejects mass at a certain constant speed. This requires a force provided by the rocket : F = dp/dt . Work out what that force is in terms of the rate of change of momentum of the ejected gas and apply the 3rd law to find the thrust force on the rocket vehicle. What does that force have to be to overcome gravity?

AM
 
Last edited:
Due to the constant never ending supply of "cool stuff" happening in Aerospace these days I'm creating this thread to consolidate posts every time something new comes along. Please feel free to add random information if its relevant. So to start things off here is the SpaceX Dragon launch coming up shortly, I'll be following up afterwards to see how it all goes. :smile: https://blogs.nasa.gov/spacex/
Back
Top