How to move from the space of moments to the space of energies?

damarkk
Messages
11
Reaction score
2
Homework Statement
Grand Canonical Ensemble of bosons: how to move from the space of moments to the space of energies?
Relevant Equations
I denote with #\epsilon# the energy of the state particle, and we have ##2m\epsilon = p^2## where
##p^2 = p_{x}^2+p_{y}^2+p_{z}^2##
Suppose we have a gas of bosons with spin 0 and the grand potential is

##\Phi =\frac{kTV}{h^3} \int ln(1-e^{-\beta(p^2/2m -\mu})d^3p##

we already integrated the function in the coordinate space and the result is the factor V (volume). Now, we know that ##\epsilon = p^2/2m## and ##d^3p = 4\pi p^2dp##, and if we change variable because we want to integrate in energies states we have of course ##p^2 = 2m\epsilon## and we obtain ##dp = (2m)^{1/2} \epsilon^{-1/2}d\epsilon##. The expression of ##\Phi## changes and become

##\Phi =\frac{kTV}{h^3} \int ln(1-e^{-\beta(p^2/2m -\mu})4\pi (2m)^{3/2}\epsilon^{1/2}d\epsilon##

or in a better manner

##\Phi =\frac{4\pi kTV(2m)^{3/2}}{h^3} \int ln(1-e^{-\beta(p^2/2m -\mu})\epsilon^{1/2}d\epsilon## (1)


Starting from this expression of the grand potential we can obtain the average number of bosons of the gas system

##N = -\frac{\partial{\Phi}}{\partial{\mu}} = \frac{4\pi V (2m)^{3/2}}{h^3} \int \frac{\epsilon^{1/2}}{e^{\beta(\epsilon-\mu)}-1} d\epsilon## (2)

the expressions (1) and (2) are different from the same that we can read on books like Greiner (Thermodynamics Statistical Mechanics) or Amit (Statistical Physics: and introductory course):

##N = -\frac{\partial{\Phi}}{\partial{\mu}} = \frac{2\pi V (2m)^{3/2}}{h^3} \int \frac{\epsilon^{1/2}}{e^{\beta(\epsilon-\mu)}-1} d\epsilon## (3)

for a factor 2.

And I know this is ridicolous and of course there are some misunderstanding very basic, but I don't understand why my result is double compared with the (3).
 
Physics news on Phys.org
damarkk said:
we already integrated the function in the coordinate space and the result is the factor V (volume). Now, we know that ϵ=p2/2m and d3p=4πp2dp, and if we change variable because we want to integrate in energies states we have of course p2=2mϵ and we obtain dp=(2m)1/2ϵ−1/2dϵ. T
##p^2=2m\epsilon##
##2pdp=2md\epsilon##
##dp=\frac{m}{p} d\epsilon=\frac{\sqrt{m} }{\sqrt{2}\sqrt{\epsilon}} d\epsilon##
it differs factor 1/2 from your result.
 
I'm sorry because this is very a stupid question :D (if you want delete it). Of course the mistake occurs because

##N(k)= \frac{V}{(2\pi)^3}\frac{4}{3}\pi k^3## and ##\frac{d N}{d k} = \frac{V}{(2\pi)^3}=4\pi k^2##

I substitute ##k^2## with ##2m\epsilon/\hbar^2## and this is the error.

The substitution must be done before the derivation ##N(\epsilon)=\frac{V}{(2\pi)^3}\frac{4}{3}\pi (\frac{2m\epsilon}{\hbar^2})^{3/2} ## and therefore we have

##\frac{d N}{d \epsilon}= \frac{2\pi (2m)^{3/2} \epsilon^{1/2}}{h^3}##

and this is correct.

Alternatively we can compute in this manner:


##\frac{d N}{d \epsilon}=\frac{d N}{d k}\frac{d k}{d \epsilon} =\frac{V}{(2\pi)^{3}} 4\pi (\frac{2m\epsilon}{\hbar^2}) \frac{m}{\hbar\sqrt{2m\epsilon}}##

that is equal to

## \frac{2\pi (2m)^{3/2} \epsilon^{1/2}}{h^3}##
 
damarkk said:
I substitute k2 with 2mϵ/ℏ2 and this is the error.
You may do this substitution anywhere. Just please be careful for taking derivatives as I posted #2.
 
Last edited:
You're right.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top