heinerL
- 19
- 0
Can anybody help me with the following:
\lim_{n \rightarrow \infty} = \frac{1^k+2+k+...+n^k}{n^{k+1}}=\frac{1}{k+1}[\tex]<br /> <br /> How do you proof this equation with the Riemann-integral, especially with upper/lower riemann sums?<br /> <br /> thank you!
\lim_{n \rightarrow \infty} = \frac{1^k+2+k+...+n^k}{n^{k+1}}=\frac{1}{k+1}[\tex]<br /> <br /> How do you proof this equation with the Riemann-integral, especially with upper/lower riemann sums?<br /> <br /> thank you!