How to prove gradients vectors are the same in polar and cartesian co.

davidbenari
Messages
466
Reaction score
18
Suppose T=T(r,θ)=G(x,y)
How do you prove ∇T(r,θ)=∇G(x,y)?

I can think of some arguments in favor of this equality, but I want an actual proof or a very good intuitive argument. My arguments in favor go something like this:

-Gradient vectors should be the same because if my directional derivative is taken parallel to the gradient vector then I get its maximum/minimum value and if these two gradient vectors are the same then everything will be consistent . However this proves that they should point in the same direction but it doesn't prove they're the same vector!


Also why can't ∇T(r,θ) can't just be = ∂T/∂r (unitvector-r) + ∂T/∂θ (unitvector-θ)

instead of ∇T(r,θ) = ∂T/∂r (unitvector-r) + (1/r)∂T/∂θ (unitvector-θ)... What does the (1/r) term imply? Aside from the fact that it will be useful whenever doing the dot product with some infinitesimally small displacement with a term rdθ (unitvector-θ).

Thanks.
 
Last edited:
Mathematics news on Phys.org
hey,

i did it in some theoretical physics exercise years past

google it, if you don't find any i can summarize it, i think, anyway the derivation is, as i remember straith forwards, based on line-elements and the chain rule... even its a 1-2 pages calculation
 
The gradient vector, of differentiable function f, is defined as "a vector pointing in the direction of fastest increase of f whose length is the rate of increase of f in that direction." Since that is completely independent of a coordinate system, your question does not make sense to me. Perhaps you have found the formulas for the gradient in Cartesian and Spherical coordinates and want to show they give the same vector?
 
HallsofIvy:
Yeah, I agree this question should not even arise at all based on definitions; it was just that my textbook presented the idea in a somewhat weird way. The only thing that keeps troubling me is the last part of my post, I'd like to hear what you think.

"" Also why can't ∇T(r,θ) can't just be = ∂T/∂r (unitvector-r) + ∂T/∂θ (unitvector-θ)

instead of ∇T(r,θ) = ∂T/∂r (unitvector-r) + (1/r)∂T/∂θ (unitvector-θ)... What does the (1/r) term imply? Aside from the fact that it will be useful whenever doing the dot product with some infinitesimally small displacement with a term rdθ (unitvector-θ). ""I can think of some answers to this, but I'd like to see what you thought about this. Thanks.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top