How to Prove sqrt(<Rg^2>) = sqrt(Lζ/3)?

jaobyccdee
Messages
33
Reaction score
0
With <Rg^2>=1/N [sum[(Ri-Rc)^{2}>] where Rc is the center of mass, =1/N sum Ri, and provided that <R^2>=2Lζ .Show that sqrt(R^{2})=sqrt(L ζ /3)
 
Last edited:
Physics news on Phys.org
It would perhaps help if you defined all the variables, and what the problem is actually asking...
 
<Rg^2> is the radius of gyration. Ri-Rc is the distance between the monomers and the center of the polymer. The problem is that give <Rg^2>=1/N Sum<( Ri-Rc )^2>, and that Rc=1/N sum Ri. proof that sqrt(<Rg^2>) = sqrt(Lζ/3). Actually i was working on it, and there is a step that i m not sure, and it's that if 1/N Sum<(Ri-1/N Sum(Ri)>^2 ==1/(2N^2) <sum of [i,j] (Ri-Rj)>^2
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top