transgalactic
- 1,386
- 0
how to prove that the derivative of this expression
<br /> f(x)=-\frac12x^2,x<0<br />
<br /> f(x)=\frac12x^2,x>=0 <br />
is f'(x)=|x|
i tried
<br /> \lim _{x->0^-}\frac{f(x)-f(0)}{x}=\lim _{x->0^-}\frac{-\frac12x^2-0}{x}=\lim _{x->0^-}-\frac12x=0\\<br />
<br /> \lim _{x->0^-}\frac{f(x)-f(0)}{x}=\lim _{x->0^-}\frac{+\frac12x^2-0}{x}=\lim _{x->0^+}+\frac12x=0<br />
but i get values
it doesn't show that f'(x)=|x|
??
<br /> f(x)=-\frac12x^2,x<0<br />
<br /> f(x)=\frac12x^2,x>=0 <br />
is f'(x)=|x|
i tried
<br /> \lim _{x->0^-}\frac{f(x)-f(0)}{x}=\lim _{x->0^-}\frac{-\frac12x^2-0}{x}=\lim _{x->0^-}-\frac12x=0\\<br />
<br /> \lim _{x->0^-}\frac{f(x)-f(0)}{x}=\lim _{x->0^-}\frac{+\frac12x^2-0}{x}=\lim _{x->0^+}+\frac12x=0<br />
but i get values
it doesn't show that f'(x)=|x|
??
Last edited: