gvenkov
- 3
- 0
Dear all,
I need a simple proof of the following:
Let u \in C(\mathbb{R}^3)[\tex] and \|u\|_{L^1(\mathbb{R}^3)} = 1[\tex]. For \lambda \geq 1[\tex], let us define the<br /> transformation u\mapsto u_{\lambda}[\tex], where u_{\lambda}(x)={\lambda}^3 u(\lambda x)[\tex]. It is clear that<br /> \|u_{\lambda}\|_{L^1(\mathbb{R}^3)} = \|u\|_{L^1(\mathbb{R}^3)} =1[\tex]. \\<br /> How can I prove that<br /> \lim_{\lambda\rightarrow\infty} u_{\lambda}(x)=\delta(x),[\tex] where \delta(x)[\tex] is the Dirac Delta function and<br /> the limit is taken in the sense of distributions.<br /> <br /> Thank you in advance.
I need a simple proof of the following:
Let u \in C(\mathbb{R}^3)[\tex] and \|u\|_{L^1(\mathbb{R}^3)} = 1[\tex]. For \lambda \geq 1[\tex], let us define the<br /> transformation u\mapsto u_{\lambda}[\tex], where u_{\lambda}(x)={\lambda}^3 u(\lambda x)[\tex]. It is clear that<br /> \|u_{\lambda}\|_{L^1(\mathbb{R}^3)} = \|u\|_{L^1(\mathbb{R}^3)} =1[\tex]. \\<br /> How can I prove that<br /> \lim_{\lambda\rightarrow\infty} u_{\lambda}(x)=\delta(x),[\tex] where \delta(x)[\tex] is the Dirac Delta function and<br /> the limit is taken in the sense of distributions.<br /> <br /> Thank you in advance.
Last edited: