ISU20CpreE
- 67
- 0
ok i got this problem:
\int\frac{\sqrt{x-2}} {x+1} \,dx
then i have to let u=(x-2)^0.5 then i solve for x in terms of u
so i get x= u^2+2
dx=2u du
\int\frac{\sqrt{x-2}} {x+1} \,dx=\int\frac{u}{u^2+3}\,2u\,du
where when i substitute i get:
\int\frac{2u^2} {u^2+3}\,du. after that I am completely lost.
\int\frac{\sqrt{x-2}} {x+1} \,dx
then i have to let u=(x-2)^0.5 then i solve for x in terms of u
so i get x= u^2+2
dx=2u du
\int\frac{\sqrt{x-2}} {x+1} \,dx=\int\frac{u}{u^2+3}\,2u\,du
where when i substitute i get:
\int\frac{2u^2} {u^2+3}\,du. after that I am completely lost.