UrbanXrisis
- 1,192
- 1
\int \frac {cos(\sqrt{x})}{\sqrt{x}}dx =?
Here's what I did:
= \int x^{-0.5}cosx^{0.5}dx
subsitute:
u= cos(\sqrt{x})
du=-sin(\sqrt{x})(0.5x^{-0.5})dx
-\frac {1}{0.5sin(\sqrt{x})}\int u du
-\frac{2}{sin(\sqrt{x})} 0.5cos^2(\sqrt{x})
-\frac{1}{sin(\sqrt{x})}cos^2(\sqrt{x})
I know I did this wrong. Any suggestions?
Here's what I did:
= \int x^{-0.5}cosx^{0.5}dx
subsitute:
u= cos(\sqrt{x})
du=-sin(\sqrt{x})(0.5x^{-0.5})dx
-\frac {1}{0.5sin(\sqrt{x})}\int u du
-\frac{2}{sin(\sqrt{x})} 0.5cos^2(\sqrt{x})
-\frac{1}{sin(\sqrt{x})}cos^2(\sqrt{x})
I know I did this wrong. Any suggestions?
Last edited: