Okay, to see if I'm getting this stuff, I gave myself a similar problem:
Find the full character table of S3. Find the induced representation in S4, and determine if it's irreducible
We look at the possible cycle structures for elements of S3, and we see there are three conjugacy classes corresponding to e, (12), and (123). The trivial and sign characters give two 1 dimensional characters. Since the sum of the dimensions of the representations have to give the order of the group, we know that the final character corresponds to a 2-dimensional representation. So it sends the conjugacy class of e (i.e. {e} itself) to 2. We know that S3 has a natural action on the triangle, so we can look at a representation that maps S3 to the matrices in GL(2,R) that do the appropriate things to the triangle, and compute their traces. In fact, we only have to do it for (12) and (123). We get 0 and -1 respectively. We compute the inner product of this character with itself to see we get a value of 1, thereby ensuring that the character is irreducible? Well, that's what my TA told me, but something about that sounds fishy.
The irreducible characters are supposed to form an ONB of the space of class functions. Let X and Y be two such characters. Then 2-1/2(X + Y) should be a normal vector, since:
\langle 2^{-1/2}(X + Y),\, 2^{-1/2}(X + Y)\rangle
= \frac{1}{2}\langle (X + Y),\, (X + Y)\rangle
= \frac{1}{2}\left (\langle X,\, X\rangle + \langle X,\, Y\rangle + \langle Y,\, X\rangle + \langle Y,\, Y\rangle\right )
= \frac{1}{2}(1 + 0 + 0 + 1) = 1
since {X, Y} should form an orthonormal set. So we get a new vector of norm 1, which, according to my TA means that it is an irreducible character, so if we call it Z, then {X, Y, Z} should form an orthonormal set, but it clearly doesn't because Z is a linear combination of X and Y. Moreover, the Z we get from this is different from the character we get by looking at the symmetries of the triangle. Anyways, looking at the one we get from the symmetries of the triangle, it is easy to see that not only is it normal, but it is also orthogonal to the other two characters, so maybe this is enough to say that it's irreducible.
Moving on, we look at the 2-dimensional character and see what we get when we induce a character in S4. Again, we see the conjugacy classes are:
e, (12), (123), (12)(34), and (1234)
The character \chi induced from \chi _0 is defined by
\chi (g) = \frac{1}{|S_3|}\sum _{x \in S_4} \chi ^o (xgx^{-1})
where \chi ^o(xgx^{-1}) = \chi _0 (g) if xgx-1 is in S3, and 0 otherwise.
We immediately see that \chi will map (12), (12)(34), and (1234) to 0. It's also immediate that it will map e to 8. Now there are a number of ways to see that this will not give an irreducible character. First, if we already know the character table of S4, we know it has no 8-dim characters, so this isn't one. Also, we know that 8² = 64 > |S4|, but the order of the group must be the sum of the squares of the dimensions, so this can't be irreducible. Finally when we calculate the norm of this character, we see we'll get something greater than or equal to 64/24 which is greater than 1, so this character is not normal, and hence not an irreducible character.
Anyways, we just have to compute what the character does to (123). First, we see this conjugacy class has 8 elements, 2 of which are in S3 (namely (123) and (321)). We want to know, for how many x in S4 do we get x(123)x-1 in S3. Well it's easy to show that if H is the group of stabilizers of (123), and t is any three cycle, then if y is such that y(123)y-1 = t, then every element z such that z(123)z-1 = t is of the form yh, for some h in H. Now the order of the group is 24, and the order of the orbit of (123) under conjugation is 8, so its stabilizer has order 3. From the above argument, there are 3 things which send (123) to (123) under conjugation, and 3 things which send it to (321). In fact, for any three cycle t, there are 3 things which send it to t. However, we're only concerned with the number that keep (123) in S3. We've counted 6, so the formula for the induced character, plus the fact that the original character sent (123) to -1 implies that the induced character sends it to -1 as well (i.e. it's -1 x 6 [the number of elements x such that x(123)x-1 is in S3] x 1/6 [since 6 = |S3|]). So to summarize, we had an irreducible character in S3 which sent e, (12), and (123) to 2, 0, and -1 respectively. This induced a character which sent e, (12), (123), (12)(34), (1234) to 8, 0, -1, 0, and 0 respectively.
There are three "problems" with the induced character:
- it is not normal (i.e. <X,X> is not 1)
- it is of dimension 8, but if it were normal, then the sum of the squares of the dimensions would be greater than the order of S4
- we know the table for S4, and this character isn't one of them [in particular, no character in the table sends e to 8]
Now the main problem I have is:
When can we tell if a character is irreducible?
It's a necessary condition that it be normal. My TA says its sufficient. I think I might have made a mistake earlier when I said it sounded fishy. I constructed another class function which was normal. But arguably it wasn't a character (i.e. it wasn't the trace of some representation of the group, it was just some function that happened to be constant on the conjugacy classes of the group). So is it right? That if X is a character, then it is sufficient for it's norm to be 1 to say that it is irreducible?