Here is what I have done. So you should go through my working to check for errors.
<br />
\int {\frac{1}{{\cos ecx - 1}}} dx<br />
<br />
= \int {\frac{1}{{\left( {\frac{1}{{\sin x}} - 1} \right)}}} dx<br />
<br />
= \int {\frac{1}{{\left( {\frac{{1 - \sin x}}{{\sin x}}} \right)}}} dx<br />
<br />
= \int {\frac{{\sin x}}{{1 - \sin x}}dx} <br />
When I see something like the above I just think, something needs to be done to the denominator. I would use a technique similar to rationalising a surd expression as follows.
<br />
= \int {\frac{{\sin x}}{{1 - \sin x}} \times \frac{{1 + \sin x}}{{1 + \sin x}}dx} <br />
<br />
= \int {\frac{{\sin x + \sin ^2 x}}{{1 - \sin ^2 x}}dx} <br />
Now use some trig identities as follows.
<br />
= \int {\frac{{\sin x + \frac{1}{2} - \frac{1}{2}\cos 2x}}{{\cos ^2 x}}} dx<br />
<br />
= \int {\frac{{\sin x}}{{\cos ^2 x}}dx + \frac{1}{2}\int {\frac{1}{{\cos ^2 x}}dx} } - \frac{1}{2}\int {\frac{{\cos 2x}}{{\cos ^2 x}}dx} <br />
<br />
= \int {\frac{{\sin x}}{{\cos ^2 x}}dx + \frac{1}{2}\int {\frac{1}{{\cos ^2 x}}dx} } - \frac{1}{2}\int {\frac{{2\cos ^2 x - 1}}{{\cos ^2 x}}} dx<br />
<br />
= \int {\frac{{\sin x}}{{\cos ^2 x}}dx + \frac{1}{2}\int {\frac{1}{{\cos ^2 x}}dx} } - \frac{1}{2}\int {\frac{{2\cos ^2 x}}{{\cos ^2 x}}} dx - \frac{1}{2}\int {\frac{{\left( { - 1} \right)}}{{\cos ^2 x}}dx} <br />
<br />
= \int {\frac{{\sin x}}{{\cos ^2 x}}dx + \frac{1}{2}\int {\frac{1}{{\cos ^2 x}}dx} } - \int {dx + \frac{1}{2}\int {\frac{1}{{\cos ^2 x}}dx} } <br />
<br />
= \int {\frac{{\sin x}}{{\cos ^2 x}}dx + \int {\frac{1}{{\cos ^2 x}}} - \int {dx} } <br />
<br />
= \int {\frac{{\sin x}}{{\cos ^2 x}}dx + \int {\sec ^2 x} dx - \int {dx} } <br />
The first integral in the above line can be done by substitution or simply by inspection which can save time.
<br />
= \frac{1}{{\cos x}} + \tan x - x + c<br />
<br />
= \sec x + \tan x - x + c<br />