How to Solve Second Order Linear Differential Equations with Initial Conditions?

INeedHelpTY
Messages
10
Reaction score
0
y'' = B*sin(t) - y

y(0) = A (constant)
y'(0) = 0

need some help to start this off, thanks
 
Last edited:
Physics news on Phys.org
If you're solving second order linear differential equations, then you will need to know this:

http://tinyurl.com/3yuhxlh

Edited: After you changed your equation.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top