I How to work out the tetrads for given functions?

  • I
  • Thread starter Thread starter etotheipi
  • Start date Start date
etotheipi
Given functions ##f=f(r)## and ##h = h(r)##, author has defined a tetrad$$(e_0)_a = f^{1/2} (dt)_a, \quad (e_1)_a = h^{1/2}(dr)_a, \quad (e_2)_a = r(d\theta)_a, \quad (e_3)_a = r\sin{\theta} (d\phi)_a$$where ##(t,r,\theta,\phi)## are coordinates. It is required to work out ##\partial_{[a} (e_\mu)_{b]}## for each of these, with ##\partial_a## the normal derivative operator associated with these coordinates. So e.g. for the first one I would have thought$$
\begin{align*}
\partial_{[a} (e_0)_{b]} = \partial_{[a} f^{1/2} (dt)_{b]} = \frac{1}{2}f^{-1/2} (\partial_{[a} f) (dt)_{b]} + f^{1/2} \partial_{[a} (dt)_{b]} \ \ \ (1)
\end{align*}
$$I figured that ##\partial_{\mu} f = \delta_{\mu r} f'##, i.e. zero for ##\mu = t,\theta,\phi## and ##f'## for ##\mu = r##. But solution is$$\partial_{[a} (e_0)_{b]} = \frac{1}{2} f^{-1/2} f' (dr)_{[a} (dt)_{b]} \ \ \ (2)$$How to get from ##(1)## to ##(2)##? Thanks
 
  • Like
Likes Dale
Physics news on Phys.org
etotheipi said:
author

Are you referring to a particular textbook or paper? If so, please give a reference.
 
  • Like
Likes etotheipi
PeterDonis said:
Are you referring to a particular textbook or paper? If so, please give a reference.

it's chapter 6.1, page 121 of wald
 
etotheipi said:
it's chapter 6.1, page 121 of wald

Ah, ok, I'll take a look.
 
  • Love
Likes etotheipi
etotheipi said:
I figured that ##\partial_{\mu} f = \delta_{\mu r} f'##

Remember that Wald's Latin indexes are abstract indexes, i.e., ##\partial_a## is not ##\partial_r## in this case, it's a set of four derivative operators, which in this case are the coordinate derivative operators: ##\partial_t##, ##\partial_r##, ##\partial_\theta##, ##\partial_\phi##. We happen to know that, for the function we are interested in, which is a scalar function of ##r## only, three of these four derivative operators give zero; but Wald is deliberately staying with abstract index notation to make clear what is happening, geometrically: we are taking the derivative of a scalar and the result is a vector.

Now, in what direction does that vector point, when we take the derivative of a scalar function of ##r## only? Obviously, it points in the direction of increasing ##r##. So, if we were just taking the derivative of ##f(r)## by itself, we would have ##\partial_a f(r) = f^\prime(r) \left( dr \right)_a##. The rest is just the chain rule and the extra factor of ##\left( dt \right)_b##.
 
  • Like
Likes etotheipi
Ah, I think the ##\partial_a f = f' (dr)_a## part makes sense now. But also, how can we show that the other term ##f^{1/2} \partial_{[a} (dt)_{b]}## vanishes?
 
etotheipi said:
how can we show that the other term ##f^{1/2} \partial_{[a} (dt)_{b]}## vanishes?

All of the vectors ##\left ( dx^\mu \right)_a## are constants, since they're just the coordinate basis vectors. The variation in the tetrads is contained entirely in the functions that multiply them. So all quantities of the form ##\partial_{[a} \left( dx^\mu \right)_{b]}## vanish.
 
  • Like
Likes etotheipi
PeterDonis said:
All of the vectors ##\left ( dx^\mu \right)_a## are constants, since they're just the coordinate basis vectors. The variation in the tetrads is contained entirely in the functions that multiply them. So all quantities of the form ##\partial_{[a} \left( dx^\mu \right)_{b]}## vanish.

Nice! Thanks for your help ☺
 
etotheipi said:
Thanks for your help ☺

You're welcome!
 
  • Love
Likes etotheipi
  • #10
PeterDonis said:
##\partial_a## is not ##\partial_r## in this case, it's a set of four derivative operators, which in this case are the coordinate derivative operators: ##\partial_t##, ##\partial_r##, ##\partial_\theta##, ##\partial_\phi##.

And to be strictly correct and capture the "which direction does the vector point" issue, we should really write this as:

$$
\partial_a = \left( dt \right)_a \partial_t + \left( dr \right)_a \partial_r + \left( d \theta \right)_a \partial_\theta + \left( d \phi \right)_a \partial_\phi
$$
 
  • Like
Likes etotheipi

Similar threads

Back
Top