Hi,(adsbygoogle = window.adsbygoogle || []).push({});

Just hoping someone could check my work and point out any errors, if any.

1. The problem statement, all variables and given/known data

Consider the sequence {[itex]a_n[/itex]} defined by [itex]a_n=\frac{n}{2n+\sqrt{n}}[/itex]. Prove that [itex]\lim_{x\to\infty}a_n=\frac{1}{2}[/itex]. (Do NOT use any of the "limit rules" from Section 2.2.)

2. Relevant equations

A sequence [itex]a_n[/itex] is said to converge to a real number A iff for each [itex]\epsilon>0[/itex] there exists a positive integer [itex]n^*[/itex] such that [itex]\lvert a_n-A\rvert<\epsilon[/itex] for all [itex]n\geq n^*[/itex].

3. The attempt at a solution

Proof:

Let [itex]\epsilon>0[/itex].

Let [itex]n^*\in\mathbb{N}[/itex] such that [itex]n^*>[\frac{1}{2}(\frac{1}{\epsilon}-1)]^2[/itex].

If [itex]n\geq n^*[/itex], then

[itex]\lvert a_n-A\rvert[/itex]

[itex]=\lvert\frac{n}{2n+\sqrt{n}}-\frac{1}{2}\rvert[/itex]

[itex]=\lvert\frac{2n-2n-\sqrt{n}}{2(2n+\sqrt{n})}\rvert[/itex]

[itex]=\lvert\frac{-\sqrt{n}}{2(2n+\sqrt{n})}\rvert[/itex]

[itex]=\lvert\frac{-n}{\sqrt{n}[2(2n+\sqrt{n})]}\rvert[/itex]

[itex]=\lvert\frac{-n}{\sqrt{n}(4n+2\sqrt{n})}\rvert[/itex]

[itex]=\lvert\frac{-n}{4n\sqrt{n}+2n}\rvert[/itex]

[itex]=\lvert\frac{-n}{2n(2\sqrt{n}+1)}\rvert[/itex]

[itex]=\lvert\frac{-1}{2(2\sqrt{n}+1)}\rvert[/itex]

[itex]=\frac{1}{2(2\sqrt{n}+1)}[/itex]

[itex]\leq\frac{1}{2\sqrt{n}+1}[/itex]

[itex]<\frac{1}{2\sqrt{[\frac{1}{2}(\frac{1}{\epsilon}-1)]^2}+1}[/itex]

[itex]=\frac{1}{2\lvert[\frac{1}{2}(\frac{1}{\epsilon}-1)]\rvert+1}[/itex]

[itex]=\frac{1}{2[\frac{1}{2}(\frac{1}{\epsilon}-1)]+1}[/itex]

[itex]=\frac{1}{(\frac{1}{\epsilon}-1)+1}[/itex]

[itex]=\frac{1}{\frac{1}{\epsilon}}[/itex]

[itex]=\epsilon[/itex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: HW Check: Prove that the sequence {a_n} converges to 1/2

**Physics Forums | Science Articles, Homework Help, Discussion**