Hydrogen in Magnetic Field, Interaction Representation

Muh. Fauzi M.
Messages
17
Reaction score
1
The hydrogen is placed in the external magnetic field:
$$ \textbf{B}=\hat{i}B_1 cos(\omega t) + \hat{j} B_2 sin(\omega t) + \hat{k} B_z ,$$

Using the relation ## H = - \frac{e\hbar}{2mc} \mathbf \sigma \cdot \mathbf B ##, then I got the form

$$ H = H_0 + H' , $$

where

$$ H'= - \frac{e \hbar}{2 m c} (B_1 cos(\omega t) \sigma_1 + B_2 sin(\omega t) \sigma_2 ) .$$

To find the spin state in the interaction representation, I substitute the ## H' ## in

$$ i\hbar\frac{\partial}{\partial t} | \psi \rangle = H' | \psi \rangle , $$

with ## | \psi \rangle = \begin{pmatrix} a \\ b \end{pmatrix} .##

Next, I tried to solving it, e.g. for ## a ##

$$\frac{\partial^2 a}{{\partial t}^2} + \lambda^2 a = 0 ,$$

with

$$ \lambda^2 = \big(\frac{e}{2mc}\big)^2[B_1^2 cos^2(\omega t)+B_2^2(sin^2(\omega t))] .$$

Then I'm heading for the boundary condition.

But then I realized that the ## \lambda^2 ## is depend on ## t ##.

So, my question, is it "ok" to continue to the boundary condition, or there is something wrong with my attempt?
 
Physics news on Phys.org
How did you get the differential equation for a? It seems to me you should get two coupled differential equations involving a and b. Is what you show the decoupled result? Also, should you not include the term ##B_z \sigma_3## in your expression for ##H'##?
 
kuruman said:
How did you get the differential equation for a? It seems to me you should get two coupled differential equations involving a and b. Is what you show the decoupled result? Also, should you not include the term ##B_z \sigma_3## in your expression for ##H'##?
I don't include the ## B_z \sigma_3 ## because it time independent.

I realized that I don't differentiate with time the ##{B_1 cos (\omega t) \mp i B_2 sin (\omega t)}## term in the ##\partial a/\partial t## and ##\partial b/\partial t##.

Here's my result after differentiating it (for ## \partial a/\partial t ##),

$$ \frac{\partial^2 a}{{\partial t}^2} = - \frac{e\hbar}{2mc}\Big[ \frac{ie}{2mc} [B_1^2 cos^2{\omega t}+B_2^2 sin^2{\omega t}] a + \frac{2mc}{e\hbar} \omega i \frac{B_1 cos \omega t + i B_2 sin \omega t}{B_1 cos \omega t - i B_2 sin \omega t} \frac{\partial a}{\partial t} \Big] .$$
 
Muh. Fauzi M. said:
I don't include the Bzσ3 B_z \sigma_3 because it time independent.
So what? Is it not a perturbation to ##H_0##? As long as ##B_z \neq 0##, you cannot ignore it.
 
kuruman said:
So what? Is it not a perturbation to ##H_0##? As long as ##B_z \neq 0##, you cannot ignore it.

Thanks for your clue.

I am using Schwinger-Tomonaga equation, where the Hamiltonian that evolve with time is only the time dependent. CMIIW
 
update, I have finish this work.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top