I am confused about the cantilever beam

AI Thread Summary
In analyzing a cantilever beam with an end load, the flexural rigidity is expressed as EI = m*g*L^3 / 3Y, while the natural frequency is f = 1/(2∏) * √(3EI/mL^3). The discussion highlights a confusion regarding the relationship between frequency and deflection, Y, suggesting that measuring Y might suffice for predicting frequency. However, it is noted that Y is influenced by mass (m) and length (L), which complicates the correlation. Ultimately, the lack of correlation between Y and m or L suggests that flexural rigidity (EI) may be the key predictor of deflection and frequency in this system.
rarara
Messages
5
Reaction score
0
Hi

For a cantilever beam with a load at its end,

flexural rigidity is:

EI = m*g*L3 / 3Y

Where m=mass, g=gravity, L=length of beam and Y=deflection

the natural frequency is

f = 1/(2∏) * √ ( 3EI/mL3)

Plugging in EI to the formula for f reveals that f depends only on the deflection, Y.

If I wanted to predict the frequency, would I therefore only need to measure Y? I am stuck in a circular logic loop because Y depends on m, L and EI but m and L cancel out in f =
 
Engineering news on Phys.org
rarara
Plugging in EI to the formula for f reveals that f depends only on the deflection, Y.

So why is that surprising?

The deflection depends upon the end load m.

The frequency is the √(ratio of elastic forces to inertial ones) ω = √(k/m)

and k, the spring constant = Load/Deflection.

The equation of motion is (for vubrations in the y direction)


m\frac{{{d^2}y}}{{d{t^2}}} + ky = 0
 
Last edited:
I have measurements of m, L, Y and f

there is no relationship between Y and m, Y and L , F and m, F and L
there is correlation between Y and f

Could the lack of correlation in Y vs m and Y vs L indicate that in my system, EI is the most important predictor of Y and by extension f ?

I guess the real problem is that I do not have enough degrees of freedom to determine the effect of EI.
 
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top