- #1
fishingspree2
- 139
- 0
Hello everyone
Let's say I want to do this integral:
[tex]\int_{}^{}f(x)g(x)\,dx[/tex]
We use this formula
[tex]\int f(x)g'(x)\, dx=f(x)g(x)-\int f'(x)g(x)\, dx[/tex]
I don't understand the utility of this equation, since we want to find [tex]\int_{}^{}f(x)g(x)\,dx[/tex] and not [tex]\int f(x)g'(x)\, dx[/tex]
Please help,
Let's say I want to do this integral:
[tex]\int_{}^{}f(x)g(x)\,dx[/tex]
We use this formula
[tex]\int f(x)g'(x)\, dx=f(x)g(x)-\int f'(x)g(x)\, dx[/tex]
I don't understand the utility of this equation, since we want to find [tex]\int_{}^{}f(x)g(x)\,dx[/tex] and not [tex]\int f(x)g'(x)\, dx[/tex]
Please help,
Last edited: