- #1

fishingspree2

- 139

- 0

Hello everyone

Let's say I want to do this integral:

[tex]\int_{}^{}f(x)g(x)\,dx[/tex]

We use this formula

[tex]\int f(x)g'(x)\, dx=f(x)g(x)-\int f'(x)g(x)\, dx[/tex]

I don't understand the utility of this equation, since we want to find [tex]\int_{}^{}f(x)g(x)\,dx[/tex] and not [tex]\int f(x)g'(x)\, dx[/tex]

Please help,

Let's say I want to do this integral:

[tex]\int_{}^{}f(x)g(x)\,dx[/tex]

We use this formula

[tex]\int f(x)g'(x)\, dx=f(x)g(x)-\int f'(x)g(x)\, dx[/tex]

I don't understand the utility of this equation, since we want to find [tex]\int_{}^{}f(x)g(x)\,dx[/tex] and not [tex]\int f(x)g'(x)\, dx[/tex]

Please help,

Last edited: