I finding my mistake moment of inertia

dswatson
Messages
36
Reaction score
0
How do i prove,using integration, that the moment of inertia of a hollow cylinder that has mass M, an outside radius R2, and an inside radius R1 is given by...
I=.5(M)(R2^2+R1^2)

here is the work I have done...
I am really close but do not see where I made my mistake
Can someone help me find it?

If you look at the cylinder like a bunch of hoops stacked together then

I(hoop)=MR^2

dV=(2*pi*R)(dR)(L)

P=sigma
P=dM/dV
dM=(2*pi*R)(dR)(L)(P)

I=int(R^2*dM)
I=int[a,b](R^2)(2*pi*R)(dR)(L)(P)
I=(2*pi*L*P)*int[R1,R2](R^3dR)
I=(2*pi*L*P)*[(R2^4-R1^4)/4]
I=(pi*L*P)*[(R2^2-R1^2)(R2^2+R1^2)/2]
V=pi*L(R2^2-R1^2)
M=pi*L*P(R2^2-R1^2)
(R2^2-R1^2)=(pi*L*P)/M
I=(R2^2+R1^2)/2M

I have most of the equation correct but M is in the denominator when if needs to be just the opposite

Thank you in advance
 
Physics news on Phys.org
Hi there,

Everything is fine up to the last two steps.

From M = pi*L*P(R2^2 - R1^2) you should get M/(pi*L*P) = (R2^2 - R1^2) and not (pi*L*P)/M = (R2^2 - R1^2).

When you change this you should get the right answer.

Don't worry about it, it's just a small mistake. So, you shouldn't get penalized heavily in an exam for it.

I make mistakes like these all the time. The way to avoid them is to always double-check all the steps in your calculations.

Hope this helps,

Wynand.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top