T.Rex
- 62
- 0
Hi,
I've spent dozen of hours searching by my-self and dozen of hours searching on the Web. Now I need help.
Who could provide a proof for this binomial property ? I need it for another proof.
Thanks
Tony
Let: F_n=2^{2^n}+1 , n \geq 2 .
Prove: F_n \text{ prime } \Longrightarrow<br /> F_n \mid A_{k_n} , \text{ where } k_n=2^{3 \times 2^{n-2}-1} \text{<br /> and } A_{k_n} = \sum_{i=0}^{k_n/2}{k_n \choose 2i}<br /> 2^i
Examples:
n=2 , F_2=17 , k_2=4 , A_{k_2}=17
n=3 , F_3=257 , k_3=32 , A_{k_3}=257*1409*2448769
n=4 , F_4=65537 , k_4=2048 , A_{k_4}=\text{very big} \equiv 0 \<br /> (\text{mod} F_4)
n=5 , F_5=4294967297 , k_5=8388608 , A_{k_5}=\text{VERY big} \neq 0 \ (\text{mod} F_5)
I've spent dozen of hours searching by my-self and dozen of hours searching on the Web. Now I need help.
Who could provide a proof for this binomial property ? I need it for another proof.
Thanks
Tony
Let: F_n=2^{2^n}+1 , n \geq 2 .
Prove: F_n \text{ prime } \Longrightarrow<br /> F_n \mid A_{k_n} , \text{ where } k_n=2^{3 \times 2^{n-2}-1} \text{<br /> and } A_{k_n} = \sum_{i=0}^{k_n/2}{k_n \choose 2i}<br /> 2^i
Examples:
n=2 , F_2=17 , k_2=4 , A_{k_2}=17
n=3 , F_3=257 , k_3=32 , A_{k_3}=257*1409*2448769
n=4 , F_4=65537 , k_4=2048 , A_{k_4}=\text{very big} \equiv 0 \<br /> (\text{mod} F_4)
n=5 , F_5=4294967297 , k_5=8388608 , A_{k_5}=\text{VERY big} \neq 0 \ (\text{mod} F_5)