I proving l^2 is a complete metric space

Click For Summary
The discussion revolves around proving that the sequence space l^2 is a complete metric space under the l^2 distance. The original poster seeks guidance on adapting a proof from l^infinity to l^2, specifically struggling with steps involving Cauchy sequences and convergence in norm. A suggested approach includes constructing a new sequence from a Cauchy sequence in l^2 and showing that it remains in l^2 while converging in norm. The poster ultimately finds a way to adapt the proof using inequalities, indicating that the proof can be simplified. The conversation highlights the challenges of transitioning between different sequence spaces while maintaining completeness.
michael.wes
Gold Member
Messages
35
Reaction score
0

Homework Statement


Prove that the sequence space l^2 (the set of all square-summable sequences) is complete in the usual l^2 distance.


Homework Equations


No equations.. just the definition of completeness and l^2.


The Attempt at a Solution


I have a sample proof from class to show that the space of bounded sequences l^infinity is complete in the sup-norm, but I'm having trouble adapting it. I asked some friends, and they linked me some difficult looking proofs... this is one of the early questions on my assignment so I think the modification of the proof should be straightforward. I have some intuition about cauchy sequences in l^2, but I can't seem to finish the proof.

I don't expect anyone to post a complete proof obviously, but I want to move on to the other questions soon. I would appreciate someone giving me an idea to complete this question.

Thanks,
M
 
Physics news on Phys.org
Here is a thin sketch of a proof. Then you can fill in the details and ask for help on steps you don't know how to do.

1) Take a Cauchy sequence c_n in l2. Construct a new sequence X by treating each coordinate as a Cauchy sequence in R (or C).
2) Show that X is in l2.
3) Show that c_n converges to X in norm.
4) Win.
 
hgfalling said:
Here is a thin sketch of a proof. Then you can fill in the details and ask for help on steps you don't know how to do.

1) Take a Cauchy sequence c_n in l2. Construct a new sequence X by treating each coordinate as a Cauchy sequence in R (or C).
2) Show that X is in l2.
3) Show that c_n converges to X in norm.
4) Win.

OK, it's 2 and 3 that I am having trouble with... maybe after I see some of the machinery for one I can do the other. How do we get on with step 3? (since we could do 2 or 3 at this point..) My friend suggested lifting some inequalities from the pointwise limits, but I don't think that works. That is, let epsilon > 0, and "temporarily fix n". Then:
\exists N\in\mathbb{N} s.t. n\geq N \Rightarrow |x_n^{(k)}-x_n|< \frac{\epsilon}{n}

The trouble with this approach, I think, is that the "N" we get depends on "n" that we temporarily fixed, so the whole argument is bogus even before you try to work with the inequalities and try to show that x^(k) -> x in the l^2 norm.
 
Nevermind, I got it.

If anyone is wondering about this in the future: you CAN adapt the proof for "l infinity". Fix k, and choose N large s.t. |x_k^n-x_n|< epsilon / (2^k/2). Then using this inequality in the l^2 norm will work, and the result falls into your lap.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...