I wanna solution for this problem

  • Thread starter Thread starter boshoof
  • Start date Start date
boshoof
Messages
1
Reaction score
0
i want to a complete solution for this problem please
xy'=[(x^2-y^2)]^1/2
 
Physics news on Phys.org
Yeah, and I want a lot of things I can't have! What have you tried yourself? (Did you notice that if you divide through by x, you can write the right hand side as a function of y/x? A simple substitution makes it a separable equation.)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top