Idempotent Matrix: Eigenvalue Must be 0 or 1

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Matrix
Dustinsfl
Messages
2,217
Reaction score
5
An nxn matrix A is said to be idempotent if A^2=A. Show that if \lambda is an eigenvalue of an idempotent matrix, then \lambda must be 0 or 1.

The only reason I can think of is that it must 0 or 1 because if you square the values 0 and 1 don't change.
 
Physics news on Phys.org
Alright so let x be an eigenvalue to A. That means that Av=xv for some vector v. Then xv=Av=A^2v=A(Av)=A(xv)=x(Av)=x^2v which implies x^2=x so x(x-1)=0 which implies that the eigenvalues to A are either 1 or 0
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top