If f is analytic on the closed disc

  • Thread starter Thread starter DotKite
  • Start date Start date
  • Tags Tags
    Closed Disc
DotKite
Messages
81
Reaction score
1

Homework Statement


If f is analytic on the closed disc, show that for r<1 we have

f(re^{i\phi}) = \frac{1}{2\pi} \int_{0}^{2\pi}\frac{f(e^{i\theta})}{1-re^{i(\phi - \theta)}}d\theta


Homework Equations





The Attempt at a Solution



I tried using cauchy integral formula and end up with

f(re^{i\phi}) = \frac{1}{2i\pi} \int_{0}^{2\pi}\frac{f(e^{i\theta})}{e^{i\theta} - re^{i(\phi)}}d\theta

i factor the denominator and get

f(re^{i\phi}) = \frac{1}{2i\pi} \int_{0}^{2\pi}\frac{f(e^{i\theta})}{e^{i\theta}(1-re^{i(\phi-\theta)})}d\theta

Don't really know where to go from here.
 
Physics news on Phys.org
Given ##z = e^{i \theta}##, did you remember to compute the transformation of ##dz##?
 
CAF123 said:
Given ##z = e^{i \theta}##, did you remember to compute the transformation of ##dz##?

Of course! Thanks a bunch man!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top