If tension provides the torque to this pulley, what is its equation?

AI Thread Summary
The discussion focuses on the equations governing the motion of a pulley system with a hanging bucket. The initial equations presented include tension, linear acceleration, and angular acceleration, but there is confusion regarding the use of symbols for acceleration. It is clarified that the linear acceleration should be denoted as "a" while angular acceleration is represented by "α," emphasizing the need for consistent notation. Participants recommend working with symbols rather than numerical values until the final expression is derived to avoid errors. The approach to solving the problem is deemed correct, provided the notation is properly aligned.
haseebaslam
Messages
2
Reaction score
0
Homework Statement
A bucket of weight 15.0 N (mass of 1.53 kg) is hanging from a cord wrapped around a pulley. The pulley has a moment of inertia of pulley=0.385 kgm^2 (of radius R = 33.0 cm). The cord is not stretched nor slip on the pulley. The pulley is observed to accelerate uniformly. If there is a frictional torque at the axle equal to, =1.10Nm. First calculate the angular acceleration, α, of the pulley and the linear acceleration of the bucket.
Relevant Equations
a = α*radius
Net Torque = I*angular acceleration
15 - Tension = 1.53*a
T = 15 - 1.53*R*α
T*0.33 - 1.10 = Iα
Is this approach correct?
 
Last edited:
Physics news on Phys.org
haseebaslam said:
Homework Statement: A bucket of weight 15.0 N (mass of 1.53 kg) is hanging from a cord wrapped around a pulley. The pulley has a moment of inertia of pulley=0.385,m^2 (of radius R = 33.0 cm). The cord is not stretched nor slip on the pulley. The pulley is observed to accelerate uniformly. If there is a frictional torque at the axle equal to, =1.10⋅m. First calculate the angular acceleration, α, of the pulley and the linear acceleration of the bucket.
Relevant Equations: a = α*radius
Net Torque = I*angular acceleration

15 - Tension = 1.53*α
T = 15 - 1.53*r*α
T*0.33 - 1.10 = Iα
Is this approach correct?
Always start with an extended FBD...

You have
##15 - T = 1.53 a##

and
##T = 15 - 1.53ra##

Is the "a" in this second equation supposed to be an ##\alpha##?

-Dan
 
  • Like
Likes haseebaslam
Some problems with the units. Is the MoI of the pulley 0.385 kg m2?
Is the frictional torque 1.10Nm?
Your first equation has force on the left, mass/time2 on the right, but I see you corrected that in the next line.

But your approach looks right.
 
  • Like
Likes topsquark and haseebaslam
topsquark said:
Always start with an extended FBD...

You have
##15 - T = 1.53 a##

and
##T = 15 - 1.53ra##

Is the "a" in this second equation supposed to be an ##\alpha##?

-Dan
Sorry about that, the a in my first equation is for linear acceleration. In the second equation, I substitute linear acceleration to get angular acceleration in the equation.
 
haseebaslam said:
Sorry about that, the a in my first equation is for linear acceleration. In the second equation, I substitute linear acceleration to get angular acceleration in the equation.
Angular acceleration is ##\alpha## (alpha) and the relation is ##a=\alpha r.## Do you see the difference between the symbols for Greek ##\alpha## and Latin ##a##?

So if you wish to substitute, you should write ##T=15-1.53r\alpha##, not ##T=15-1.53ra.##
 
Note: I highly suggest working with symbols rather than values until you reach a final expression for whatever you wish to compute. Inserting numbers at an early stage makes it less clear where things come from and makes it harder to check for errors. You also run the risk of introducing rounding errors down the line. Only insert numerical values at the very end.
 
  • Like
Likes jim mcnamara and topsquark
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Back
Top