If x is a cycle of length n, x^n is the identity.

AxiomOfChoice
Messages
531
Reaction score
1
Is it true that if \sigma \in S_n is a cycle of length k \leq n, then \sigma^k = \varepsilon, where \varepsilon is the identity permutation, and that k is the least nonzero integer having this property?
 
Physics news on Phys.org
That is surely obvious, isn't it?
 
matt grime said:
That is surely obvious, isn't it?
Not to me. :frown: Maybe I'm missing something small...if you can get me started on why it's the case, I can probably finish it out.
 
Special cases are always a good way to get started. Try k=1,2,3.

P.S. you meant "least positive integer"
 
A k-cycle has order k - it really is trivial. You only need to consider the case of

(123..k)

which just rotates the elements 1,..,k cyclically.
 
More geometrically, label the vertices of a k-gon with 1,..,k, then (1...k) rotates it by 2pi/k.

If you don't like that then just think what (1...k) does to the set 1,..,k it sends i to i+1 (wrapping k round to 1). So what happens if apply it r times?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top