I'm just wondering, what causes the existence of quantum levels?

Click For Summary
SUMMARY

The discussion centers on the existence of quantum levels, specifically addressing the role of boundary conditions and the Uncertainty Principle in quantum mechanics. Participants debate the implications of the Hamiltonian energy eigenvalue equation, emphasizing that boundary conditions dictate the lowest energy states. The conversation also critiques the interpretation of the Uncertainty Principle, clarifying its independence from energy levels and its foundational role in quantum mechanics. Ultimately, the consensus is that boundary conditions are crucial for understanding the stability of quantum states.

PREREQUISITES
  • Understanding of quantum mechanics principles, particularly the Uncertainty Principle.
  • Familiarity with Hamiltonian mechanics and energy eigenvalue equations.
  • Knowledge of boundary conditions in quantum systems.
  • Basic grasp of wave-particle duality and its implications in quantum theory.
NEXT STEPS
  • Study the implications of boundary conditions in quantum mechanics.
  • Explore the derivation of the Hamiltonian energy eigenvalue equation in detail.
  • Research the Uncertainty Principle and its applications in quantum theory.
  • Examine the role of quantum fluctuations and their effects on atomic stability.
USEFUL FOR

Students and professionals in physics, particularly those focusing on quantum mechanics, theoretical physicists, and anyone interested in the foundational principles governing atomic stability and quantum behavior.

  • #31
saaskis said:
There definitely are analogues of HUP in classical physics as well, but we are talking about point particle mechanics here. And in classical point particle mechanics, there is no HUP. So when one applies HUP to a point particle, one is doing QM, and it is this HUP that everyone is talking about here.

HUP for waves in classical mechanics exists.

QM is sort of a mixture of point particle classical mechanics and waves, hence the old name "wave mechanics"
 
Physics news on Phys.org
  • #32
ansgar said:
HUP exists classically as well.

so now I have one more guy supporting me that HUP is "heuristically" i.e. not really fundamental...

I am a teacher at university in QM classes, who are you?

No, he only said that the HUP is not unique ... he seems to me to be arguing that it is fundamental to Q.M. ... read that last line of his post again:

It's simply not QM anymore, without HUP".

In my experience it is much easier to get students to understand and anticipate many quantum phenomenon starting from the HUP. Take zero point energy for instance ... early in my class I was able to get my students to predict the existence of zero point energy, just by asking them to think about what must happen in terms of the HUP when a particle is confined in a particular region of space. Similarly, I used the HUP to explain why, for a given system, the energy of an eigenstate increases with the number of nodes in the wavefunction. Another great example is the triple Stern-Gerlach experiment, which is another great illustration of the fundamental nature of the HUP, and how some of it's ramifications were directly evident in very clear ways in the early experiments that established the foundations of QM.

I have found that this kind of qualitative understanding really helps the students to keep up with the course material, and to keep it as part of their general knowledge when they leave the course.
 
  • #33
ansgar said:
HUP exists classically as well.

so now I have one more guy supporting me that HUP is "heuristically" i.e. not really fundamental...

I am a teacher at university in QM classes, who are you?
I am a graduate student so you think that makes your point stronger?
I think this is a pointless debate. I think it's not my duty to "convince" you that HUP is fundamental to QM and without it, all the interesting quantum phenomena wouldn't exist.

I honestly don't know what you are arguing against here besides, well, this one's almost verbatim from Feynman, so who are you?
 
  • #34
Ad hominem arguments won't resolve anything.
 
  • #35
sokrates said:
I am a graduate student so you think that makes your point stronger?
I think this is a pointless debate. I think it's not my duty to "convince" you that HUP is fundamental to QM and without it, all the interesting quantum phenomena wouldn't exist.

I honestly don't know what you are arguing against here besides, well, this one's almost verbatim from Feynman, so who are you?


I would say that HUP is fundamental but not the ONLY and MOST fundamental thing. The MOST fundamental thing is the wave function which is used to DERIVE HUP, i.e. HUP is not more fundamental than the schrödinger wave equation for instance (which is used to derive energy levels in eg. the hydrogen atom). So that was a good argument from my side, HUP is not the most fundamental thing and that interesting phenomena do exists without using it.

HUP gives the standard deviation time standard deviation in position > hbar/2 i.e an upper limit - is that really so hard to accept? Now since it gives the limit of things, it can be used heuristically to give a FEELING and orders of magnitude estimates. It is not strange that HUP gives "ok" results, it only shows that QM is self consistent.

So i stress again, the most fundamental thing is the wave function - without it - no interesting phenomena would exist ;)
 
  • #36
Seems you're just disagreeing on what 'fundamental' means.

The HUP is 'fundamental' in the sense that it's a basic, and very general result of QM.
But it's not 'fundamental' in the sense of being a fundamental postulate QM is built on.
You have to have QM to derive the result.

Sure, it makes for a nice heuristic which can be used to explain why atoms are stable, but you're just explaining one QM result in terms of another then.
Similarly, you could explain the atom in terms of the 1d particle-in-a-box, showing that the energy levels increase as the size decreases,
and thus it's this 'confinement energy' which balances the nuclear attraction. (and as an added bonus, you also explain the Rydberg formula)
 
  • #37
The argument seems to have changed into a discussion of uncertainty, but as to the OP, the electron is held in the atom by potential energy differences. If you accept that electrons have De Broglie wavelengths, they can only exist around the electron at specific radii, otherwise they would destructively interfere with themselves and stop existing, which causes the discrete levels observed. This is, of course, somewhat of a simplification, but the concept is there.
 
  • #38
docpangloss said:
The argument seems to have changed into a discussion of uncertainty, but as to the OP, the electron is held in the atom by potential energy differences. If you accept that electrons have De Broglie wavelengths, they can only exist around the electron at specific radii, otherwise they would destructively interfere with themselves and stop existing, which causes the discrete levels observed. This is, of course, somewhat of a simplification, but the concept is there.

Then what is the mediator between the electron's wave function and the electron itself that tells the electron to stay put?
 
  • #39
The electron is indistinguishable from its wave function. Electrons are not strictly particles or waves, but exhibit characteristics of both. The wave function is just a convenient representation of the square root of the probability of the electron being observed in a given location.
 
  • #40
docpangloss said:
The electron is indistinguishable from its wave function. Electrons are not strictly particles or waves, but exhibit characteristics of both. The wave function is just a convenient representation of the square root of the probability of the electron being observed in a given location.

So we know why the electron is held in place and does not crash into the nucleus though we don't know how. There is no observable holding it in place.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
741