I'm not getting the curl of vector potential equal to magnetic field

AI Thread Summary
The discussion revolves around the calculation of the curl of the vector potential in the context of magnetostatics. The original vector potential was incorrectly interpreted in spherical coordinates, leading to discrepancies in obtaining the magnetic field. It was clarified that the vector potential should be expressed in cylindrical coordinates, where the correct form is given as A = 0hatρ + (μ₀nIρ/2)hatφ + 0hatz. The participants emphasized that using cylindrical coordinates simplifies the calculations and yields the expected magnetic field result. Ultimately, the correct approach resolved the initial confusion and confirmed the relationship between the vector potential and the magnetic field.
Adesh
Messages
735
Reaction score
191
Homework Statement
Verify that the curl of vector potential equal to the magnetic field in the case of soelnoid.
Relevant Equations
N/A
In this image of Introduction to Electrodynamics by Griffiths
Screen Shot 2020-05-09 at 2.36.31 PM.png
.

we have calculated the vector potential as ##\mathbf A = \frac{\mu_0 ~n~I}{2}s \hat{\phi}##. I tried taking its curl but didn't get ##\mathbf B = \mu_0~n~I \hat{z}##. In this thread, I have calculated it like this :

$$(curl~\mathbf A)_r = \frac{1}{r\sin\theta} \left[ \frac{\partial}{\partial \theta} (\sin\theta ~A_{\phi}) -\frac{\partial A_{\theta}}{\partial \phi}\right]$$
$$(curl~\mathbf A)_r = \frac{\mu_0 ~n~I}{2} \cot\theta$$

$$
(curl~\mathbf A)_{\theta}= \frac{1}{r}
\left[
\frac{1}{\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} (r A_{\phi}) \right]$$

$$(curl~\mathbf A)_{\theta} = \mu_0~n~I$$

$$(curl~\mathbf A)_{\phi}= \frac{1}{r} \left[ \frac{\partial}{\partial r} (r A_{\theta}) - \frac{\partial A_r}{\partial \theta} \right]$$
$$(curl~\mathbf A)_{\phi} = 0$$

Now, let's convert it into cartesian system: $$ \mathbf B = \mu_0~n~I (\frac{\cot \theta }{2} \hat r + \hat{\theta})$$
$$\frac{\cot \theta}{2} \hat r = \frac{\cos \theta \cos \phi}{2} \hat x + \frac{\cos \theta \sin \phi}{2}\hat y + \frac{\cos^2 \theta}{2} \hat z $$
$$\hat \theta= \cos\theta \cos \phi \hat x +\cos \theta \sin \phi \hat y + -\sin \theta \hat z$$
And you see I won't get the desired field if I add them component -wise.

Please guide me.
 
  • Like
Likes PhDeezNutz
Physics news on Phys.org
The s in the formula makes all the difference here , it is not the ##r##-coordinate of a spherical coordinate system but instead it is the ##\rho## coordinate in cylindrical coordinate system. We have to do all the calculations for ##curl A## from the start and work in cylindrical (not spherical) coordinate system.

The vector potential A in cylindrical coordinates is now $$\vec{A}=0\hat\rho+\frac{\mu_0 nI \rho}{2}\hat\phi+0\hat z$$ and it is not equal to the vector A of the previous thread, the presence of the ##\rho## coordinate makes it all different now.

Or we can still work in spherical coordinates (not recommended for this problem of infinitely long solenoid) but you first have to convert the above vector A to spherical coordinates which is easy though, we just replace $$\rho=r\sin\theta$$ since the azimuthal unit vectors ##\hat \phi## are the same in cylindrical and spherical coordinates. So the vector A in spherical coordinates is
$$\vec{A}=0\hat r+\frac{\mu_0 nI r\sin\theta}{2}\hat \phi +0\hat\theta$$
 
Last edited:
  • Like
Likes Adesh
if you work in cylindrical coordinates you ll get the result very fast.
 
  • Love
Likes Adesh
@Delta2 Thank you so much. I calculated it using the formula for curl in cylinderical and got the expected result.

Thank you for everything you did for me today. Your re-arrival is very beneficial to me.
 
  • Like
Likes Delta2
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top