Improper Integrals: Solving for Integrability of log^a(x)/x^p

  • Thread starter Thread starter economist1985
  • Start date Start date
economist1985
Messages
8
Reaction score
0

Homework Statement



For what p is f(x)=log^a(x)/x^p integrable from (1,infinity)?


Homework Equations



The Attempt at a Solution



I'm not sure, maybe I can do some sort of inequality so that I can arrive at the comparison theorem for improper integrals.
 
Physics news on Phys.org
It's always integrable from (1,N) for N > 1. Find an expression for that integral, and then try letting N \rightarrow \infty. For what p does the limit exist?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top