Incline Plane & Friction Question

AI Thread Summary
The discussion focuses on calculating the friction force acting on a block being pulled or pushed at a 30° angle on a rough surface. When pulling at an upward angle, the normal force is calculated as N = mg - mg sin(30°), resulting in friction f1 = 0.5μk. Conversely, when pushing downward, the normal force becomes N = mg + mg sin(30°), leading to a friction force of 1.5μk, which is three times the initial friction. Clarifications are provided regarding the calculation of the normal force, emphasizing the need to consider vertical forces acting on the block. Understanding the normal force is crucial for accurately determining friction in both scenarios.
bchung606
Messages
3
Reaction score
0
Question says: A person is pulling on a block of mass m with a force equal to its weight directed 30° above the horizontal plane across a rough surface, generating a friction f on the block. If the person is now pushing downward on the block with the same force 30° above the horizontal plane across the same rough surface, what is the friction on the block?

Solution says: The friction f on the block is represented by the formula f =μkN, where N is the normal force acting on the block. When the force is applied 30° above the horizontal, N = mg - mg sin30° Since sin30° is 0.5, N = mg - 0.5mg = 0.5mg. Substituting N into the formula for friction, it becomes f1 = 0.5μk. When the force is applied 30° below the horizontal, N = mg + mg sin30° = mg + 0.5mg = 1.5 mg. Substituting N into the formula for friction, it becomes 1.5μk = 3f1.


I think I understand what the book is saying logically, but I don't understand how N = mg - mgsinθ or that N = mg + mgsinθ. N should equal mgcosθ. Can someone help me understand this part?
 
Physics news on Phys.org
bchung606 said:
I think I understand what the book is saying logically, but I don't understand how N = mg - mgsinθ or that N = mg + mgsinθ. N should equal mgcosθ. Can someone help me understand this part?
First, realize that this is a horizontal plane, not an inclined plane. To find the normal force, just add up the vertical forces acting on the block. They must add to zero.

In the case where the force is applied at an upward angle, what forces act on the block and what are their vertical components?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top