MHB Indeterminate Integration with Integration Constant

Click For Summary
The discussion focuses on calculating the integral of the function 1/((x+4)(x^2-8x+19)). The user initially breaks down the integral into simpler parts, but encounters confusion regarding the integration of the middle term. The solution involves recognizing the need to apply the derivative of arctan and correcting an earlier mistake by dividing by -2. Ultimately, the integral is expressed in terms of logarithmic and arctangent functions, with the final result requiring the addition of an integration constant, C. The importance of including the constant in indefinite integrals is emphasized.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

I want to calculate the integral $$\int\frac{1}{(x+4)(x^2-8x+19)}\, dx$$ I have done the following : $$\frac{1}{(x+4)(x^2-8x+19)}=\frac{1}{67}\frac{1}{x+4}+\frac{1}{67}\frac{12-x}{x^2-8x+19}$$ and so we get \begin{align*}\int\frac{1}{(x+4)(x^2-8x+19)}\, dx&=\frac{1}{67}\int \frac{1}{x+4}\, dx+\frac{1}{67}\int \frac{12-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8+4-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx+\frac{1}{67}\int \frac{4-x}{x^2-8x+19}\, dx \\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx +\frac{1}{67}\cdot \ln | x^2-8x+19| \end{align*} Is everything correct so far? How could we continue to calculate the middle term? :unsure:
 
Physics news on Phys.org
Hey mathmari!

If I take the derivative of the last term with "ln" in it, I do not get what we integrated. (Worried)

To integrate the middle term, we can use the derivative of arctan. What is that derivative? (Wondering)
 
Klaas van Aarsen said:
If I take the derivative of the last term with "ln" in it, I do not get what we integrated. (Worried)

Ah I forgot to divide by $-2$. It should be:
\begin{align*}\int\frac{1}{(x+4)(x^2-8x+19)}\, dx&=\frac{1}{67}\int \frac{1}{x+4}\, dx+\frac{1}{67}\int \frac{12-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8+4-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx+\frac{1}{67}\int \frac{4-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx-\frac{1}{134}\int \frac{2x-8}{x^2-8x+19}\, dx \\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx -\frac{1}{134}\cdot \ln | x^2-8x+19| \end{align*}

:unsure:
Klaas van Aarsen said:
To integrate the middle term, we can use the derivative of arctan. What is that derivative? (Wondering)

It holds that $\left (\text{arctan}(x)\right )'=\frac{1}{1+x^2}$.
$$\int \frac{8 }{x^2-8x+19}\, dx=\int \frac{8 }{(x-4)^2+3}\, dx=\frac{8}{3}\cdot \int \frac{1 }{\left (\frac{x-4}{\sqrt{3}}\right )^2+1}\, dx\overset{u=\frac{x-4}{\sqrt{3}}}{=} \frac{8}{3}\cdot \int \frac{1 }{\left (u\right )^2+1}\, \sqrt{3}du=\frac{8}{\sqrt{3}}\text{arctan}(u)=\frac{8}{\sqrt{3}}\cdot \text{arctan}\left (\frac{x-4}{\sqrt{3}}\right )$$

Therefore we get \begin{align*}\int\frac{1}{(x+4)(x^2-8x+19)}\, dx& =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx -\frac{1}{134}\cdot \ln | x^2-8x+19| \\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\cdot \frac{8}{\sqrt{3}}\cdot \text{arctan}\left (\frac{x-4}{\sqrt{3}}\right ) -\frac{1}{134}\cdot \ln | x^2-8x+19|\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{8}{67\sqrt{3}}\cdot \text{arctan}\left (\frac{x-4}{\sqrt{3}}\right ) -\frac{1}{134}\cdot \ln | x^2-8x+19| \end{align*}
Is everything correct? :unsure:
 
Last edited by a moderator:
mathmari said:
Is everything correct?
It looks correct to me. (Nod)
 
Klaas van Aarsen said:
It looks correct to me. (Nod)

Great! Thank you! (Sun)
 
Ah, one more thing... there should be a $+C$ at the end. (Blush)
Every indeterminate integral must have an indeterminate integration constant.
 
Klaas van Aarsen said:
Ah, one more thing... there should be a $+C$ at the end. (Blush)
Every indeterminate integral must have an indeterminate integration constant.

Ahh yes (Blush)