Indeterminate Integration with Integration Constant

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Calculation Integral
Click For Summary
SUMMARY

The integral $$\int\frac{1}{(x+4)(x^2-8x+19)}\, dx$$ was successfully decomposed into partial fractions, yielding $$\frac{1}{67}\cdot \ln |x+4| + \frac{8}{67\sqrt{3}}\cdot \text{arctan}\left (\frac{x-4}{\sqrt{3}}\right ) - \frac{1}{134}\cdot \ln | x^2-8x+19| + C$$. The integration process involved recognizing the need for an integration constant, which is essential for all indefinite integrals. The derivative of arctan was utilized to simplify the integral of the middle term, confirming the correctness of the calculations presented.

PREREQUISITES
  • Understanding of integral calculus, specifically partial fraction decomposition.
  • Familiarity with logarithmic and arctangent functions.
  • Knowledge of basic integration techniques involving substitution.
  • Ability to differentiate functions, particularly the derivative of arctan.
NEXT STEPS
  • Study advanced techniques in partial fraction decomposition for more complex integrals.
  • Learn about the properties and applications of the arctangent function in integration.
  • Explore the derivation and applications of integration constants in indefinite integrals.
  • Practice integrating functions with similar structures to reinforce understanding of the concepts discussed.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators looking for examples of integration techniques and their applications.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

I want to calculate the integral $$\int\frac{1}{(x+4)(x^2-8x+19)}\, dx$$ I have done the following : $$\frac{1}{(x+4)(x^2-8x+19)}=\frac{1}{67}\frac{1}{x+4}+\frac{1}{67}\frac{12-x}{x^2-8x+19}$$ and so we get \begin{align*}\int\frac{1}{(x+4)(x^2-8x+19)}\, dx&=\frac{1}{67}\int \frac{1}{x+4}\, dx+\frac{1}{67}\int \frac{12-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8+4-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx+\frac{1}{67}\int \frac{4-x}{x^2-8x+19}\, dx \\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx +\frac{1}{67}\cdot \ln | x^2-8x+19| \end{align*} Is everything correct so far? How could we continue to calculate the middle term? :unsure:
 
Physics news on Phys.org
Hey mathmari!

If I take the derivative of the last term with "ln" in it, I do not get what we integrated. (Worried)

To integrate the middle term, we can use the derivative of arctan. What is that derivative? (Wondering)
 
Klaas van Aarsen said:
If I take the derivative of the last term with "ln" in it, I do not get what we integrated. (Worried)

Ah I forgot to divide by $-2$. It should be:
\begin{align*}\int\frac{1}{(x+4)(x^2-8x+19)}\, dx&=\frac{1}{67}\int \frac{1}{x+4}\, dx+\frac{1}{67}\int \frac{12-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8+4-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx+\frac{1}{67}\int \frac{4-x}{x^2-8x+19}\, dx\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx-\frac{1}{134}\int \frac{2x-8}{x^2-8x+19}\, dx \\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx -\frac{1}{134}\cdot \ln | x^2-8x+19| \end{align*}

:unsure:
Klaas van Aarsen said:
To integrate the middle term, we can use the derivative of arctan. What is that derivative? (Wondering)

It holds that $\left (\text{arctan}(x)\right )'=\frac{1}{1+x^2}$.
$$\int \frac{8 }{x^2-8x+19}\, dx=\int \frac{8 }{(x-4)^2+3}\, dx=\frac{8}{3}\cdot \int \frac{1 }{\left (\frac{x-4}{\sqrt{3}}\right )^2+1}\, dx\overset{u=\frac{x-4}{\sqrt{3}}}{=} \frac{8}{3}\cdot \int \frac{1 }{\left (u\right )^2+1}\, \sqrt{3}du=\frac{8}{\sqrt{3}}\text{arctan}(u)=\frac{8}{\sqrt{3}}\cdot \text{arctan}\left (\frac{x-4}{\sqrt{3}}\right )$$

Therefore we get \begin{align*}\int\frac{1}{(x+4)(x^2-8x+19)}\, dx& =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\int \frac{8 }{x^2-8x+19}\, dx -\frac{1}{134}\cdot \ln | x^2-8x+19| \\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{1}{67}\cdot \frac{8}{\sqrt{3}}\cdot \text{arctan}\left (\frac{x-4}{\sqrt{3}}\right ) -\frac{1}{134}\cdot \ln | x^2-8x+19|\\ & =\frac{1}{67}\cdot \ln |x+4|+\frac{8}{67\sqrt{3}}\cdot \text{arctan}\left (\frac{x-4}{\sqrt{3}}\right ) -\frac{1}{134}\cdot \ln | x^2-8x+19| \end{align*}
Is everything correct? :unsure:
 
Last edited by a moderator:
mathmari said:
Is everything correct?
It looks correct to me. (Nod)
 
Klaas van Aarsen said:
It looks correct to me. (Nod)

Great! Thank you! (Sun)
 
Ah, one more thing... there should be a $+C$ at the end. (Blush)
Every indeterminate integral must have an indeterminate integration constant.
 
Klaas van Aarsen said:
Ah, one more thing... there should be a $+C$ at the end. (Blush)
Every indeterminate integral must have an indeterminate integration constant.

Ahh yes (Blush)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K