dirk_mec1
- 755
- 13
Homework Statement
http://img389.imageshack.us/img389/9272/33055553mf5.png
The Attempt at a Solution
Via induction: for n=1 equality holds now assume that Vn=Jn.
I introduce a dummy variable b and the fundamental theorem of calculus and change order of integration:
V_{n+1}f(t) = \int_a^t \frac{(t-s)^n}{n!} f(s) \mbox{d}s = \int_a^t \frac{t-s}{n} \frac{(t-s)^{n-1} } {(n-1)!} \mbox{d}s = \int_a^t \int_s^t \frac{1}{n} \frac{(t-s)^{n-1} } {(n-1)!} f(s) \mbox{d}b\ \mbox{d}s = \int_a^t \frac{1}{n} \int_a^b \frac{(t-s)^{n-1} } {(n-1)!} f(s) \mbox{d}s\ \mbox{d}b = \int_a^t \frac{1}{n} J^n f(b) \mbox{d}b<br />
<br /> = \frac{1}{n} J(Jf) = \frac{1}{n} J^{n+1}f
But how do I get rid of the 1/n?
Last edited by a moderator: