Induction Proof Help: Showing (n^5)/5 + (n^3)/3 + 7n/15 is Integer

  • Thread starter Thread starter Anna Maria
  • Start date Start date
  • Tags Tags
    Induction Proof
Anna Maria
Messages
1
Reaction score
0
I need to show that (n^5)/5 + (n^3)/3 + 7n/15 is an integer for all n.


I tried induction that obviously work for 1 but i could not manage to show this for k+1. Any tips please?
 
Physics news on Phys.org


try expanding the k+1 case. Pascals triangle is a huge help for figuring out how to expand it. After expanding and factoring, you should see the base case and your hypothesis.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top