Inequalities in Interval Notation and Distance Comparison

  • Thread starter Thread starter MrNeWBiE
  • Start date Start date
  • Tags Tags
    Inequalities
AI Thread Summary
The discussion focuses on expressing inequalities in interval notation and understanding distance comparisons using absolute values. For the inequalities x≤3 and 1 ≤ x < 4, participants seek clarification on how to convert these into interval notation. The second part involves expressing the condition that the distance between x and -3 is at least 5, which is represented as |x + 3| ≥ 5. Participants clarify that the absolute value is used to denote distance, leading to the correct formulation of the inequality. Overall, the conversation emphasizes the importance of understanding interval notation and absolute values in mathematical expressions.
MrNeWBiE
Messages
75
Reaction score
0

Homework Statement

(1) Express the inequalities x≤3 and 1 ≤ x < 4 in interval notation.(2) Express in term of inequality: The distance between x and -3 is at least 5.

The Attempt at a Solution



(1) i don't know what he asking for ,,, can you explain it for me please

(2) is it " x+(-3)≥5 " ,,,, x≥2 ? right ?

in (2) he want me to find x or what is the story ?
 
Last edited:
Physics news on Phys.org
1. Look in your book for some examples of interval notation.
2. Absolute values are used to represent distance.
 
first one ... done ,,,

2.
it's gone be " abs (x-3) ≥ 5 " then solve for it ?
 
MrNeWBiE said:
first one ... done ,,,

2.
it's gone be " abs (x-3) ≥ 5 " then solve for it ?

From you problem description, all that is asked for is the expression. You don't need to solve the inequality.

Your expression represents the distance between x and + 3.

Also, there's a key on the keyboard that you can use for absolute values - |
 
O,O ... how is that ? in the question it's -3 ,,, why in absolute i make it |x+3|≥ 5 ?
 
To find the distance, you subtract, so the distance from x to -3 is represented as is x - (-3).
 
ahaa
 
Back
Top