How do I show that(adsbygoogle = window.adsbygoogle || []).push({});

[tex]0\leq \Re (s) +k\Rightarrow\left| (s)_k \int_0^1\cdots\int_0^1 (n+x_1+\cdots +x_k)^{-s-k}\, dx_1\cdots\, dx_k \right| \leq |(s)_k|n^{-\Re (s) -k}[/tex]

where k is a nongegative integer and [tex](s)_k:=s(s+1)\cdots (s+k-1)[/tex] is the Pochammer symbol (aka the rising factorial) ?

If it helps, I know (and have previously proven) that

[tex](s)_k\int_0^1\cdots\int_0^1 (n+x_1+\cdots +x_k)^{-s-k}\, dx_1\cdots\, dx_k = \sum_{m=0}^{k}(-1)^{m} \left(\begin{array}{c}k\\m\end{array}\right) (n+m)^{-s} =: \Delta ^k (n^{-s})[/tex]

where [tex]\Delta [/tex] is the forward difference operator.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Inequality involving abs. value of complex-valued multiple integral

**Physics Forums | Science Articles, Homework Help, Discussion**