Inequality Proof: Is Multiplying Both Sides Valid?

  • Thread starter Thread starter Bashyboy
  • Start date Start date
  • Tags Tags
    Inequality Proof
Bashyboy
Messages
1,419
Reaction score
5
Hello,

In Principles of Mathematical Analysis, the author is attempting to demonstrate that, if ##x > 0## and ##y < z##, then ##xy < xz##, which essentially states that multiplying by a positive number does not disturb the inequality.

I am hoping someone will quickly denounce this with an adequate explanation, but I feel as though the author is using the result to prove it.

He begins by noting that, if ##z > y##, ##z - y > 0##. He multiplies both sides by ##x > 0##, and gets ##x(z-y) > 0##.

This seems to be a special case of the theorem which we are trying to prove. Wouldn't this be an invalid step as we do not know what results from multiplying both sides of an inequality? Let ##c = z - y##, and replace ##y## with zero in the theorem. This would give us

If ##x > 0## and ##0 < c##, then ##x \cdot 0 < xc##.

Am I mistaken?
 
Mathematics news on Phys.org
He is assuming that if you multiply two positive numbers, you will get a positive number. I don't think for knowing this, you need to know the theorem mentioned, so I see no problem with the proof.
 
Shyan said:
I don't think for knowing this...

I am sorry, but I do not quite follow what you are saying here.
 
Bashyboy said:
I am sorry, but I do not quite follow what you are saying here.
The product of two numbers is negative only when one of them is negative. You can't get a negative number by multiplying two positive numbers.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top