kpoltorak
- 15
- 0
Homework Statement
Show that \forall a,b \in R:
\left|ab\right|\leq\frac{1}{2}(a^{2}+b^{2})
Homework Equations
Triangle Inequality seems to be useless.
The Attempt at a Solution
(a+b)^{2}=a^{2}+b^{2}+2ab
2ab=(a+b)^{2}-(a^{2}+b^{2})
ab=\frac{1}{2}(a+b)^{2}-\frac{1}{2}(a^{2}+b^{2})
\left|ab\right|=\left|\frac{1}{2}(a+b)^{2}-\frac{1}{2}(a^{2}+b^{2})\right|
\left|ab\right|=\left|\frac{1}{2}(a^{2}+b^{2})-\frac{1}{2}(a+b)^{2}\right|