Rahmuss
- 222
- 0
Homework Statement
Use separation of variables in cartesian coordinates to solve the infinite cubical well (or "particle in a box"):
V(x,y,z) = \{^{0, if x, y, z are all between 0 and a;}_{\infty , otherwise.}
Homework Equations
Well, I've been trying to use
\frac{1}{2}mv^{2} + V = \frac{1}{2m}(P^{2}_{x} + P^{2}_{y} + P^{2}_{z}) + V = E\Psi
The Attempt at a Solution
\frac{1}{2}mv^{2} + V = \frac{1}{2m}(P^{2}_{x} + P^{2}_{y} + P^{2}_{z}) + V = E\Psi
\frac{1}{2m}(P^{2}_{x} + P^{2}_{y} + P^{2}_{z}) + V = \frac{-\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}} + V_{x} + \frac{-\hbar^{2}}{2m}\frac{\partial^{2}}{\partial y^{2}} + V_{y} + \frac{-\hbar^{2}}{2m}\frac{\partial^{2}}{\partial z^{2}} + V_{z}
\hat{H}_{x} = \frac{-\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}} + V_{x}
\hat{H}_{y} = \frac{-\hbar^{2}}{2m}\frac{\partial^{2}}{\partial y^{2}} + V_{y}
\hat{H}_{z} = \frac{-\hbar^{2}}{2m}\frac{\partial^{2}}{\partial z^{2}} + V_{z}
\Psi = X(x)Y(y)Z(z)
(\hat{H}_{x} + \hat{H}_{y} + \hat{H}_{z})(X(x)Y(y)Z(z)) = E*(X(x)Y(y)Z(z))
So getting it here doesn't really tell me what the energies are. Can I cancel out \Psi?