MHB Infinite Direct Sums and Standard Inclusions and Projections

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading An Introduction to Rings and Modules With K-Theory in View by A.J. Berrick and M.E. Keating (B&K).

In Chapter2: Direct Sums and Short Exact Sequences in Sections 2.1.11 and 2.1.12 B&K deal with infinite direct products and infinite direct sums (external and internal).

In Section "2.1.13 Remarks", B&K comment on the implications of Sections 2.1.11 and 2.1.12.

Remark (ii) reads as follows:View attachment 3355My question related to B&K's remark above is as follows:

Why is it impossible to attach a meaning to an infinite set of maps (standard inclusions and projections that is ...)? We can attach meaning to an infinite set of modules or submodules ... ... Why is it more abstract or difficult (in fact, impossible!) to attach meaning to an infinite set of maps?

Could someone please clarify and explain B&Ks remark.

Peter***NOTE***

I am aware that in the text displayed above, B&K talk about an infinite 'sum' of maps saying ..." ... ... since it is impossible to attach a meaning to an infinite sum of maps ... ... "

BUT ... ... as far as I can see, the proposition to which they refer (Proposition 2.1.7) only seems to involve a list, not a sum of maps ...

Section 2.1.7 reads as follows:View attachment 3356
 
Physics news on Phys.org
There is no problem with assigning meaning to an infinite SET of maps.

But if we try to add the images of each map together, we have to wait an awfully long time for the "result".
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top