Inner (dot) Product Inequality: Proving Nonnegativity

  • Thread starter Thread starter babyrudin
  • Start date Start date
  • Tags Tags
    Dot
babyrudin
Messages
8
Reaction score
0

Homework Statement



For x,y \in R^n, their inner ("dot") product is given by

<x,y>=\sum_{i=1}^n x_i y_i.

Also, we write

<x,x>=\|x\|^2.

Homework Equations



Fix p>1. Show that for all x,y \in R^n we have

< \|x\|^{p-2}x -\|y\|^{p-2}y, x-y> \geq 0

The Attempt at a Solution



Expanding the left-hand side, we can write

<\|x\|^{p-2}x,x> -<\|y\|^{p-2}y,x>-<\|x\|^{p-2}x,y>+<\|y\|^{p-2}y,y>

which further simplifies to

\|x\|^p +\|y\|^p -(\|x\|^{p-2} +\|y\|^{p-2})<x,y>.

Then I'm stuck. How do I show that the above is nonnegative?
 
Last edited:
Physics news on Phys.org
how about using cauchy-schwartz inequality?
something like this
<x,y><=sqrt(<x,x><y,y>)=||x||*||y||
then you get that what you wrote is greater than:
||x||^p+||y||^p-(||x||^p-2+||y||^p-2)(||x||*||y||)=
x^(p-1)(x-y)+y^(p-1)(y-x)=(x^p-1-y^p-1)(x-y)
now if ||x||>=||y|| then ||x||^p-1>=||y||^p-1
I leave you to check this proposition.
 
I've got it now, many many thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top