- #1

- 624

- 11

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- I
- Thread starter Silviu
- Start date

- #1

- 624

- 11

- #2

jedishrfu

Mentor

- 12,816

- 6,694

In the solar system case, over a long period of time you will need to factor in how one planet affects another and the then it becomes an n-body problem which is extremely impractical to impossible to model perfectly.

https://en.wikipedia.org/wiki/Stability_of_the_Solar_System

I've seen simulations of three body problem which easily become chaotic as they run. Error is introduced just from repeated summing which either adds energy to the system or takes it away. Often modelers try to use algorithms that while not perfect periodically add error and then remove it (error is manifest as energy in the run) so that over a long time the run is stable.

https://en.wikipedia.org/wiki/Three-body_problem

https://en.wikipedia.org/wiki/N-body_problem

https://en.wikipedia.org/wiki/N-body_simulation

- #3

- 624

- 11

But in the end, this is a numerical problem. The Solar System motion is deterministic, it is just a limitation of our computers (like round-off errors), right?

In the solar system case, over a long period of time you will need to factor in how one planet affects another and the then it becomes an n-body problem which is extremely impractical to impossible to model perfectly.

https://en.wikipedia.org/wiki/Stability_of_the_Solar_System

I've seen simulations of three body problem which easily become chaotic as they run. Error is introduced just from repeated summing which either adds energy to the system or takes it away. Often modelers try to use algorithms that while not perfect periodically add error and then remove it (error is manifest as energy in the run) so that over a long time the run is stable.

https://en.wikipedia.org/wiki/Three-body_problem

https://en.wikipedia.org/wiki/N-body_problem

https://en.wikipedia.org/wiki/N-body_simulation

- #4

jedishrfu

Mentor

- 12,816

- 6,694

Chaotic systems can't be predicted because that computer has a finite precision in its numbers and no matter how many decimals we choose to save, its in these lost decimal values that chaos springs up. Saturn's moons have chaotic orbits and a couple of moons have a dance where they switch orbits as they cross.

Basically small changes in one state get magnified in future states until the simulation no longer matches reality. We say the system is non-linear.

https://en.wikipedia.org/wiki/Butterfly_effect

- #5

- 624

- 11

But my question is, as classical mechanics is completely predictable, shouldn't the Solar System be, too? So if we now predict the orbits for the next 100 million years and create a computer that can have 10 times more accuracy, we can extend the prediction. So if we would have a computer with bigger and bigger accuracy, would we be able to predict the position of each planet indefinitely?We don't know if the solar system is stable for the long term, only that it has been for some time and that it will be for some time.

Chaotic systems can't be predicted because that computer has a finite precision in its numbers no matter how many decimals we choose to save and its in these lost decimal values that chaos springs up. Saturn's moons have chaotic orbits and a couple of moons have a dance where they switch orbits as they cross.

- #6

jedishrfu

Mentor

- 12,816

- 6,694

- #7

- 624

- 11

I am not sure I understand. The only small effects I can think of, would be from GR (well of course there might be quantum fluctuations, but I assume they are insignificant for this purpose). So if you use GR instead of Newtonian Mechanics, shouldn't you get perfect results for a long period with a big enough computer accuracy?

- #8

jedishrfu

Mentor

- 12,816

- 6,694

https://en.wikipedia.org/wiki/Butterfly_effect

- #9

anorlunda

Staff Emeritus

- 9,422

- 6,421

- #10

- 624

- 11

Ok, maybe I was not clear enough. My question is not if it is feasible to simulate all of these, but if the Solar System is intrinsically deterministic. Like quantum mechanics can't be simulated perfectly because it is not deterministic (by this I mean the measurement, not the evolution of the wave function). Is the solar system deterministic (I am not asking if it can be simulated on a computer now)?

- #11

anorlunda

Staff Emeritus

- 9,422

- 6,421

Ok, maybe I was not clear enough. My question is not if it is feasible to simulate all of these, but if the Solar System is intrinsically deterministic. Like quantum mechanics can't be simulated perfectly because it is not deterministic (by this I mean the measurement, not the evolution of the wave function). Is the solar system deterministic (I am not asking if it can be simulated on a computer now)?

In that case, re-read #4. Also read about chaos theory on Wikipedia if you're not familiar with that.

Share: