Conservation of Momentum and Energy for a System of Connected Particles

  • Thread starter Thread starter pentazoid
  • Start date Start date
  • Tags Tags
    Systems
pentazoid
Messages
142
Reaction score
0

Homework Statement



A particle Q has mass 2m and two other particles P, R, each of mass m, are connected to Q by light inextensible strings of length a. The system is free to move on a smooth horizontal table. Initially P, Q R are at the points (0,a),(0,0),(0,-a) respectively so that they lie in a straight line with the strings taut. Q is then projected in the positive x-direction with speed u. express the conservation of linear momentum and energy for this system in terms of the coordinates x(the displacement of Q) and theta(the angle by each of the strings(.

Show that theta satisfies the equation

(theta-dot)^2=(u^2/a^2)*(1/(2-cos^2(theta))


Homework Equations



equations for conservation of energy
equation for conservation of momemtum.


The Attempt at a Solution



F \cdot x-hat=0
p \cdotx-hat=0

p\cdotx-hat=(m1*v1+m2*v2) \cdot x-hat= 2m*v_x+m(v_x+(a*theta_dot*cos(theta))= 3m(v_x)+m*a*theta_dot*cos(theta)==> 3*(v_x)+a*theta_dot*cos(theta)=0

T_1+T_2; T_1 is the kinetic energy initial and T_2 is the final kinetic energy.
V=V_1-V_2=0-m*g*a*cos(theta)
rail is smooth therefore constraint force does no work and E is convserved.

T=T_1+T_2=.5*(2m)*v_x^2+.5*m*(v_2)^2

v_2=v_2x+v_2theta

v_2= (v_x)^2+(a*theta_dot)^2+2*v_x*(a*theta_dot)*cos(theta)

T_1 would be zero since the mass is initiall at rest.

1/2*m*(3v_x^2+a^2*theta_dot^2+2*a*x_dot*theta_dot*cos(theta))-mga=mga*cos(theta)

Did I set up my conservation of energy equation correctly ?
 
Physics news on Phys.org
anyone have a hard time comprehending my solution? Just say so.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top