ppg
- 3
- 0
Hi, I am a newcomer, and i have a question about an integral shown as follows,
\int d^{3}p_{2} \frac{1}{2E_{2}} d^{3}p_{3} \frac{1}{2E_{3}} \delta^{4}(p-p_{2}-p_{3}) p_{3}^{\alpha} p_{3}^{\beta} p_{2}^{\mu}
Is this integral equal to (just considering Lorentz structures)
A(p^{2})g^{\alpha\beta}p^{\mu}+B(p^{2})g^{\beta\mu}p^{\alpha}+B(p^{2})g^{\mu\alpha}p^{\beta}
where the coefficients of the last two terms should be the same because of the symmetry of the integral variables p_{3}^{\alpha} p_{3}^{\beta}
Thank u for ur help!
\int d^{3}p_{2} \frac{1}{2E_{2}} d^{3}p_{3} \frac{1}{2E_{3}} \delta^{4}(p-p_{2}-p_{3}) p_{3}^{\alpha} p_{3}^{\beta} p_{2}^{\mu}
Is this integral equal to (just considering Lorentz structures)
A(p^{2})g^{\alpha\beta}p^{\mu}+B(p^{2})g^{\beta\mu}p^{\alpha}+B(p^{2})g^{\mu\alpha}p^{\beta}
where the coefficients of the last two terms should be the same because of the symmetry of the integral variables p_{3}^{\alpha} p_{3}^{\beta}
Thank u for ur help!
Last edited: