Integral cos^5(9t) dt: Solving Path

  • Thread starter Thread starter Hyari
  • Start date Start date
  • Tags Tags
    Integration
Hyari
Messages
11
Reaction score
0

Homework Statement


integral cos^5(9*t) dt


Homework Equations


half sets?


The Attempt at a Solution


integral cos(9t)^5 dt

integral cos(9t)^2 * cos(9t)^2 * cos(9t)

cos(9t)^2 = (1/2)*[ 1 + cos(18t) ]

integral (1/2)*[ 1 + cos(18t) ] * (1/2)*[ 1 + cos(18t) ] * cos(9t)

Am I on the right path?
 
Physics news on Phys.org
Hint:
cos^2 u = 1-sin^2 u
 
u = cos(9t)
du = -9sin(9t)

[ 1 - sin(9t)^2 ] * [ 1 - sin(9t)^2 ] * u du?
 
\cos^5{9t} is the same as \cos{9t}(1-\sin^2{9t})^2

Expand it and integrate
 
Then how do you integrate that beat o_O.

cos(9t) * (1 - sin(9t)^2)^2 * dt

u = 1-sin(9t)^2
du = -18sin(9t) * cos(9t) * dt

du / -18sin(9t) = cos(9t) * dt

1 / -18sin(9t) <-integral-> u^2 * du

1/-18sin(9t) * u^3

1/-18sin(9t) * (1-sin(9t)^2)^3 ?
 
try again, try u = something else.
 
Hyari said:
Then how do you integrate that beat o_O.

cos(9t) * (1 - sin(9t)^2)^2 * dt

u = 1-sin(9t)^2
du = -18sin(9t) * cos(9t) * dt

du / -18sin(9t) = cos(9t) * dt

1 / -18sin(9t) <-integral-> u^2 * du

1/-18sin(9t) * u^3

1/-18sin(9t) * (1-sin(9t)^2)^3 ?

You need to expand it. Then you will be able to use \frac{d}{dx}\sin{x} = \cos{x}
 
So basically when we have to integrate something with only cosine in it, and cosine is odd powered, we take the most even powers out and transform those into the sines as mentioned, expand and use substitution u=sin x to do the rest.
 
I don't understand... can you give me an example?

cos^2 * cos^2 * cos(x) = (1 - sin^2)^2 * cos(x).

I don't understand :(
 
  • #10
Do you know the Identity \sin^2 x + \cos^2 x=1?
 
  • #11
Hyari said:
u = cos(9t)
du = -9sin(9t)

[ 1 - sin(9t)^2 ] * [ 1 - sin(9t)^2 ] * u du?

What if you let u= sin(9t) instead?
 

Similar threads

Back
Top